摘要:
In a semiconductor device according to the present invention, a diffusion layer is formed on a silicon substrate, and a Silicon oxide film is deposited thereon. A hole communicating with the diffusion layer is formed in the silicon oxide film. A silver bromide emulsion is applied to the silicon oxide film having the hole by the spin coat technique. The silver bromide emulsion is irradiated with light through a mask to leave only that portion of the emulsion which is exposed by the light. By doing so, a metal wiring is formed integrally with a via hole, and thus decreased in resistance and suitable for forming the via hole. Consequently, a semiconductor device having such a wiring can be obtained easily, inexpensively.
摘要:
A nonvolatile semiconductor memory using carbon related films as variable resistance films includes bottom electrodes formed above a substrate, buffer layers formed on the bottom electrodes and each formed of a film containing nitrogen and containing carbon as a main component, variable resistance films formed on the buffer layers and each formed of a film containing carbon as a main component and the electrical resistivity thereof being changed according to application of voltage or supply of current, and top electrodes formed on the variable resistance films.
摘要:
According to an embodiment of the present invention, a plating apparatus, including: a plating solution tank configured to store a plating solution; a holder configured to hold a substrate on which a seed layer is formed in said plating solution tank; a first anode disposed in said plating solution tank, composed of a more anodic material in its oxidation-reduction potential than the oxidation-reduction potential of a metal composing the seed layer, and electrically connectable to the seed layer of the substrate held by said holder; and a second anode disposed in said plating solution tank, capable of applying a voltage between the seed layer of the substrate held by holder, is provided.
摘要:
Disclosed is a semiconductor device manufacturing method in which a silicon nitride film is formed to cover an n-channel transistor formed on a semiconductor substrate and to apply a tensile stress in a channel length direction to a channel of the n-channel transistor, the method includes: forming a first-layer silicon nitride film above the n-channel transistor; irradiating the first-layer silicon nitride film with ultraviolet radiation; and after the ultraviolet irradiation, forming at least one silicon nitride film thinner than the first-layer silicon nitride film above the first-layer silicon nitride film. Silicon nitride films formed to apply the tensile stress is formed by respective steps.
摘要:
In a method of manufacturing a semiconductor device, a first plasma insulating film having a thickness of 0.1 .mu.m or more is formed on the semiconductor substrate with lower-surface wirings thereon. The semiconductor substrate is moved into a pressure-reduced CVD device, and then an SiH.sub.4 gas and H.sub.2 O.sub.2 are supplied into the pressure-reduced CVD device to react them to each other in a vacuum of 650 Pa or less within the temperature range of -10.degree. C. to +10.degree. C. to form a reflow SiO.sub.2 film having a thickness of 0.4 .mu.m to 1.4 .mu.m on the semiconductor substrate. The semiconductor substrate is put in a vacuum of 6.5 pascal for 30 seconds or more. Thereafter, the semiconductor substrate is put at a high temperature of 300.degree. C. to 450.degree. C. for 120 to 600 seconds. A second plasma insulating film having a thickness of 0.3 .mu.m or more and serving as a cap film is formed on the semiconductor substrate. The crack resistance of the reflow insulating film formed in the above steps is improved, and the flatness of the reflow insulating film is improved.
摘要:
An apparatus and a method for processing substrate are generally used for apparatuses for wet-type process of substrate, such as an electrolytic processing apparatus for use in forming interconnects by embedding a metal such as copper (Cu) or the like in fine interconnect patterns (recesses) that are formed in a substrate such as a semiconductor wafer and for use in forming bumps for electrical connections. The substrate processing apparatus includes: a substrate holder for holding a substrate; a first electrode for contacting the substrate to supply electricity to a processing surface of the substrate; a second electrode disposed so as to face the processing surface of the substrate held by the substrate holder; and a processing liquid supply section for supplying a processing liquid into the space between the processing surface of the substrate held by the substrate holder and the second electrode, wherein the substrate holder is designed to rotate the substrate during processing in such a manner that acceleration and slowdown and/or normal rotation and reverse rotation are repeated.
摘要:
In a method of manufacturing a semiconductor device, a first plasma insulating film having a thickness of 0.1 .mu.m or more is formed on the semiconductor substrate with lower-surface wirings thereon. The semiconductor substrate is moved into a pressure-reduced CVD device, and then an SiH.sub.4 gas and H.sub.2 O.sub.2 are supplied into the pressure-reduced CVD device to react them to each other in a vacuum of 650 Pa or less within the temperature range of -10.degree. C. to +10.degree. C. to form a reflow SiO.sub.2 film having a thickness of 0.4 .mu.m to 1.4 .mu.m on the semiconductor substrate. The semiconductor substrate is put in a vacuum of 6.5 pascal for 30 seconds or more. Thereafter, the semiconductor substrate is put at a high temperature of 300.degree. C. to 450.degree. C. for 120 to 600 seconds. A second plasma insulating film having a thickness of 0.3 .mu.m or more and serving as a cap film is formed on the semiconductor substrate. The crack resistance of the reflow insulating film formed in the above steps is improved, and the flatness of the reflow insulating film is improved.
摘要:
According to one embodiment, a variable resistance layer includes a mixture of a first compound and a second compound. The first compound includes carbon (C) as well as at least one element selected from a group of elements G1. The group of elements G1 consists of hydrogen (H), boron (B), nitrogen (N), silicon (Si), and titanium (Ti). The second compound includes at least one compound selected from a group of compounds G2. The group of compounds G2 consists of silicon oxide (SiO2), silicon oxynitride (SiON), silicon nitride (Si3N4), carbon nitride (C3N4), boron nitride (BN), aluminum nitride (AlN), aluminum oxide (Al2O3), and silicon carbide (SiC). Concentration of the first compound in the variable resistance layer is not less than 30 volume percent, and not more than 70 volume percent.
摘要翻译:根据一个实施方案,可变电阻层包括第一化合物和第二化合物的混合物。 第一化合物包括碳(C)以及选自元素组G1的至少一种元素。 元素组G1由氢(H),硼(B),氮(N),硅(Si)和钛(Ti)组成。 第二化合物包括选自化合物G2的至少一种化合物。 化合物组G2由氧化硅(SiO 2),氮氧化硅(SiON),氮化硅(Si 3 N 4),碳氮化物(C 3 N 4),氮化硼(BN),氮化铝(AlN),氧化铝(Al 2 O 3)和 碳化硅(SiC)。 可变电阻层中第一化合物的浓度不小于30体积%,不大于70体积%。
摘要:
Disclosed is a semiconductor device manufacturing method in which a silicon nitride film is formed to cover an n-channel transistor formed on a semiconductor substrate and to apply a tensile stress in a channel length direction to a channel of the n-channel transistor, the method includes: forming a first-layer silicon nitride film above the n-channel transistor; irradiating the first-layer silicon nitride film with ultraviolet radiation; and after the ultraviolet irradiation, forming at least one silicon nitride film thinner than the first-layer silicon nitride film above the first-layer silicon nitride film. Silicon nitride films formed to apply the tensile stress is formed by respective steps.
摘要:
Disclosed is a semiconductor device manufacturing method in which a silicon nitride film is formed to cover an n-channel transistor formed on a semiconductor substrate and to apply a tensile stress in a channel length direction to a channel of the n-channel transistor, the method includes: forming a first-layer silicon nitride film above the n-channel transistor; irradiating the first-layer silicon nitride film with ultraviolet radiation; and after the ultraviolet irradiation, forming at least one silicon nitride film thinner than the first-layer silicon nitride film above the first-layer silicon nitride film. Silicon nitride films formed to apply the tensile stress is formed by respective steps.