摘要:
A non-single crystalline semiconductor containing at least one kind of atoms selected from the group consisting of silicon atoms (Si) and germanium atoms (Ge) as a matrix, and at least one kind of atoms selected from the group consisting of hydrogen atoms (H) and halogen atoms (X), wherein said non-single crystalline semiconductor has an average radius of 3.5 .ANG. or less and a density of 1.times.10.sup.19 (cm.sup.-3) or less as for microvoids contained therein. The non-single crystalline semiconductor excels in semiconductor characteristics and adhesion with other materials and are effectively usable as a constituent element of various semiconductor devices.
摘要:
A non-monocrystalline silicon carbide semiconductor comprises carbon atoms, silicon atoms, and at least one of hydrogen atoms and halogen atoms, the non-monocrystalline silicon carbide semiconductor having therein microvoids with an average radius of not more than 3.5.ANG. at a microvoid density of not more than 1.times.10.sup.19 cm.sup.-3.
摘要:
A method for repairing a defective semiconductor device, the defective semiconductor device including a semiconductor thin film and a conductive thin film, disposed in the named order, on a conductive surface of a substrate, such that the conductive thin film and the conductive surface of the substrate are electrically short-circuited at a pinhole occurring in the semiconductor thin film to form an electrically short-circuited portion. The method includes the steps of applying desired a voltage through an electrode positioned above a surface of the defective semiconductor device, and moving the electrode along the surface of the defective semiconductor device while maintaining a distance between the electrode and the conductive thin film sufficient to allow a discharge to occur when the electrode is above the electrically short-circuited portion, such that the discharge modifies a region of the conductive thin film which is in electrical contact with the conductive surface of the substrate, to establish an electrically noncontacted state between the conductive thin film and the conductive surface of the substrate.
摘要:
A non-monocrystalline silicon carbide semiconductor comprises carbon atoms, silicon atoms, and at least one of hydrogen atoms and halogen atoms, the non-monocrystalline silicon carbide semiconductor having therein microvoids with an average radius of not more than 3.5 .ANG. at a microvoid density of not more than 1.times.10.sup.19 cm.sup.-3.
摘要:
An apparatus for repairing a defective semiconductor device having an electrically short-circuited portion, wherein the semiconductor device includes a semiconductor thin film and a conductive thin film disposed in the named order on a conductive surface of a substrate and in which the conductive thin film and the conductive surface of the substrate are electrically short-circuited at a pinhole occurring in the semiconductor thin film to form an electrically short-circuited portion so that the semiconductor device is defective. The apparatus includes a substrate holding unit for holding the substrate of the defective semiconductor device and an electrode arranged above the substrate holding unit so that, when the defective semiconductor is positioned on the substrate holding unit, there is a predetermined distance between the electrode and the conductive thin film of the defective semiconductor device, the electrode being capable of moving in relation to the substrate of the defective semiconductor device. The apparatus further includes a voltage applying unit for applying a desired voltage to the electrode, wherein discharge is caused between the electrode and the conductive thin film of the defective semiconductor device by applying a desired voltage to the electrode through the voltage applying means to thereby modify a region of the conductive thin film of the defective semiconductor device in electrical contact with the conductive surface of the substrate of the defective semiconductor device.
摘要:
A solar cell comprising a conductive substrate and semiconductor layers laminated on the conductive substrate, said laminate comprising a p-type layer composed of a non-single crystal Si material, an i-type layer serving as an active layer and an n-type layer, wherein a diamond layer having an uneven surface and containing a valence electron controlling agent is interposed between the conductive substrate and the semiconductor layers.
摘要:
An electrophotographic image-forming and developing method using as light receiving member an amorphous silicon light receiving member which comprises a substrate and a light receiving layer disposed on said substrate, said light receiving layer comprising a first layer capable of exhibiting a photoconductivity, a second layer capable of supporting a latent image and a third layer capable of supporting a developed image being laminated in this order on said substrate, said first layer being formed of an amorphous material containing silicon atoms as a matrix, and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms, said second layer being formed of an amorphous material containing silicon atoms as a matrix, carbon atoms, atoms of an element belonging to Group III of the Periodic Table, and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms, and said third layer being formed of an amorphous material containing silicon atoms as a matrix, carbon atoms and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms; and using as said toner a fine particle insulating toner having a volume average particle size in the range of 4.5 to 9 um and an apparent viscosity at 100.degree. C. in the range of 1.times.10.sup.4 to 2.times.10.sup.5 poise.
摘要:
There is provided an improved light receiving member for electrophotography which is made up of an aluminum support and a multilayered light receiving layer exhibiting photoconductivity formed on said aluminum support, wherein said multilayered light receiving layer consists of a lower layer in contact with said support and an upper layer, said lower layer being made of an inorganic material containing at least aluminum atoms (Al), silicon atoms (Si), and hydrogen atoms (H), and having a part in which said aluminum atoms (Al), silicon atoms (Si), and hydrogen atoms (H) are unevenly distributed across the layer thickness, said upper layer being made of a non-single-crystal material composed of silicon atoms (Si) as the matrix and at least either of hydrogen atoms (H) or halogen atoms (X), and containing at least either of germanium atoms or tin atoms in a layer region in contact with said lower layer. The light receiving member for electrophotography exhibits outstanding electric characteristics, optical characteristics, photoconductive characteristics, durability, image characteristics, and adaptability to use environments.
摘要:
A light receiving member for electrophotography made up of an aluminum support and a multilayered light receiving layer exhibiting photoconductivity formed on the aluminum support, wherein the multilayered light receiving layer consists of a lower layer in contact with the support and an upper layer, the lower layer being made of an inorganic material containing at least aluminum atom (Al), silicon atoms (Si) and hydrogen atoms (H), and having portion in which the aluminum atoms (Al), silicon atoms (Si), and hydrogen atoms (H) are unevenly distributed across the layer thickness, the upper layer being made of a non-single-crystal material composed of silicon atoms (Si) as the matrix and at least either of hydrogen atoms (H) or halogen atoms (X) and containing at least one of carbon atoms, nitrogen atoms (N) and oxygen atoms (O) in the layer region in adjacent with the lower layer. The light receiving member for electrophotography can overcome all of the foregoing problems and exhibits extremely excellent electrical property, optical property, photoconductivity, durability, image property and circumstantial property of use.
摘要:
A method of quickly depositing a non-single-crystal semiconductor film and forming a silicon-type non-single-crystal photovoltaic device, and a method of continuously manufacturing the photovoltaic devices. By this method the deposited film is formed by decomposing a raw material gas with microwave energy which is lower than the microwave energy required to completely decompose the raw material gas. RF energy is applied at the same time which is higher in energy than the microwave energy. The microwave energy acts on the raw material gas at an internal pressure level of 50 mTorr or lower to form a uniform non-single-crystal semiconductor film with excellent electrical characteristics and reduced light deterioration.