摘要:
Techniques described herein may provide for device discovery of direct communication paths, to enable direct mode communication, between communication devices. The discovery of the communication paths may be based on identifiers that may be defined at the application level and included in device discovery requests. In one implementation, the identifiers may be SIP-URIs (session initiation protocol (SIP)-uniform resource identifiers (URIs)).
摘要:
A technology for network-level device proximity detection is disclosed. In an example, core network (CN) device can include computer circuitry configured to: Store user equipment (UE) information; calculate proximity between two UEs; and assist the two UEs with direct device discovery based on the calculated proximity. The core network device can include a proximity services (ProSe) server, a gateway mobile location center (GMLC), an evolved serving mobile location center (E-SMLC), or a mobility management entity (MME).
摘要:
Technology for a lawful interception of a proximity service (e.g., device-to-device (D2D) communication) provided to user equipments (UEs) is disclosed. In an example, a method can include an evolved Node B (eNB) transmitting a proximity service setup message to a first UE to setup D2D communication with a second UE. The eNB can transmit a lawful interception message to the first UE or the second UE to provide lawful interception of the D2D communication. The eNB can receive packets associated with the D2D communication from the first UE or the second UE. The eNB can communicate the received packets from the first UE and the second UE to the core network (CN) to be copied.
摘要:
In embodiments, apparatuses, methods, and storage media may be described for establishing a direct connection between two UEs. Each UE may be provisioned with a temporary identifier by a server of a wireless network of the UE. The UEs may then be configured to broadcast the temporary IDs in radio signals over radio resources that are separate from the radio resources of the network. The temporary IDs may not contain identifying information of the broadcasting UE that is interpretable without receiving further information from the network.
摘要:
Techniques described herein may provide for device discovery of direct communication paths, to enable direct mode communication, between communication devices. The discovery of the communication paths may be based on identifiers that may be defined at the application level and included in device discovery requests. In one implementation, the identifiers may be SIP-URIs (session initiation protocol (SIP)-uniform resource identifiers (URIs)).
摘要:
Embodiments for providing network-assisted to direct device discovery switch are generally described herein. In some embodiments, location information is received at an evolved packet core (EPC) from at least a first and a second user equipment (UE). A network-assisted device-to-device (D2D) request is received from the first UE for establishing a D2D wireless connection with the second UE. Proximity of the first UE and the second UE are monitored. Before detecting the second UE being in proximity to the first UE, direct discovery is determined to be more resource efficient than continuing to provide network-assisted D2D discovery. An indication is provided to the first UE and the second UE to perform direct discovery based on information provided in the indication.
摘要:
The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.
摘要:
The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.
摘要:
Session continuity may be maintained when communication devices transition from communicating through network infrastructure (e.g., through a cellular network) to direct mode communications (e.g., a communication path directly between two communication devices). For example, in switching from an infrastructure mode communication path to a direct mode communication path, a method may include: determining a public-facing address corresponding to the infrastructure path; replacing, for a packet that is to be transmitted over the direct mode communication path to a second communication device, a source address field of the packet with the determined public-facing address; and encapsulating the packet with source and destination address fields corresponding to the first and second communication device through the direct mode communication path respectively.
摘要:
The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.