摘要:
A charged particle beam system, a sample processing method, and a semiconductor inspection system enable an accurate detection of a particle in a film without causing LMIS contamination and allow observation with an electron microscope quickly. A particle 65 causing a defect in a film 66 that has been detected with a separate optical inspection system is detected with an optical microscope 43 based on position information acquired by the separate optical inspection system. A sample 31 is processed with a nonmetal ion beam 22 so as to allow observation of the particle 65 with an electron microscope image or an ion microscope image, or ultimate analysis of the particle 65 with an EDX.
摘要:
Provided is a charged particle beam processing apparatus capable of improving yields by suppressing the spread of metal pollution to a semiconductor manufacturing process to a minimum. The charged particle beam processing apparatus includes an ion beam column 1 that is connected to a vacuum vessel 10 and irradiates a sample 35 with an ion beam 11 of nonmetal ion species, a microsampling unit 3 having a probe 16 that extracts a microsample 43 cut out from a sample 35 by the ion beam 11, a gas gun 2 that discharges a gas for bonding the microsample 43 and the probe 16, a pollution measuring beam column 6A that is connected to the same vacuum vessel 10 to which the ion beam column 1 is connected and irradiates an ion beam irradiation traces by the ion beam column 1 with a pollution measuring beam 13, and a detector 7 that detects characteristic X-rays emitted from the ion beam irradiation traces by the ion beam column 1 upon irradiation with the pollution measuring beam 13.
摘要:
An ion beam processing apparatus includes an ion beam irradiation optical system that irradiate a rectangular ion beam to a sample held on a first sample stage, an electron beam irradiation optical system that irradiates an electron beam to the sample, and a second sample stage on which a test piece, extracted from the sample by a probe, is mounted. An angle of irradiation of the ion beam can be tilted by rotating the second sample stage about a tilting axis. A controller controls the width of skew of an intensity profile representing an edge of the rectangular ion beam in a direction perpendicular to a first direction in which the tilting axis of the second sample stage is projected on the second sample stage surface so that the width will be smaller than the width of skew of an intensity profile representing another edge of the ion beam in a direction parallel to the first direction.
摘要:
The apparatus for ion beam fabrication, which has been able to detect any anomalous condition of ion beams only by means of the current irradiated on the specimen, could not compensate the failure by investigating the cause and could not realize stable processing. To solve the problem described above, the present invention includes the first and second blankers and Faraday cups switches ON and OFF the first and second blankers and monitors beam current at two positions above and below the projection mask. By adopting this configuration, it will be possible to acquire the information on failure in ion beam, sort out the cause of the failure and to compensate the failure while limiting damages to the projection mask. As a result, it will be possible to realize stable processing by means of ion beam, and to use the ion beam fabricating device on a stable basis.
摘要:
Provided is a technique for accurately taking out a defect detected by an electron beam, and for analyzing the defect. In this technique, a defective portion in a wafer is detected by the irradiation of the electron beam. A mark made of a deposition layer is formed by irradiating the electron beam onto the defective portion while supplying a deposition gas thereto. On the basis of this mark, the defective portion is machined into a sample piece by using a projection ion beam generated from a gas ion source, and thereby the defective portion is taken out.
摘要:
An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder a gas tube, a gas volume control valve, and a stop valve.
摘要:
The present invention provides an ion beam processing technology for improving the precision in processing a section of a sample using an ion beam without making a processing time longer than a conventionally required processing time, and for shortening the time required for separating a micro test piece without breaking the sample or the time required for making preparations for the separation. An ion beam processing apparatus is structured so that an axis along which an ion beam is drawn out of an ion source and an ion beam irradiation axis along which the ion beam is irradiated to a sample mounted on a first sample stage will meet at an angle. Furthermore, the ion beam processing apparatus has a tilting ability to vary an angle of irradiation, at which the ion beam is irradiated to the sample, by rotating a second sample stage, on which a test piece extracted from the sample by performing ion beam processing is mounted, about the tilting axis of the second sample stage. The ion beam processing apparatus is structured so that a segment drawn by projecting the axis, along which the ion beam is drawn out of the ion source, on a plane perpendicular to the ion beam irradiation axis can be at least substantially parallel to a segment drawn by projecting the tilting axis of the second sample stage on the plane perpendicular to the ion beam irradiation axis.
摘要:
Provided is a charged particle beam processing apparatus capable of improving yields by suppressing the spread of metal pollution to a semiconductor manufacturing process to a minimum. The charged particle beam processing apparatus includes an ion beam column 1 that is connected to a vacuum vessel 10 and irradiates a sample 35 with an ion beam 11 of nonmetal ion species, a microsampling unit 3 having a probe 16 that extracts a microsample 43 cut out from a sample 35 by the ion beam 11, a gas gun 2 that discharges a gas for bonding the microsample 43 and the probe 16, a pollution measuring beam column 6A that is connected to the same vacuum vessel 10 to which the ion beam column 1 is connected and irradiates an ion beam irradiation traces by the ion beam column 1 with a pollution measuring beam 13, and a detector 7 that detects characteristic X-rays emitted from the ion beam irradiation traces by the ion beam column 1 upon irradiation with the pollution measuring beam 13.
摘要:
A technique is provided which can precisely form a deposition pile in a hole bored in the surface of a specimen. In ion beam apparatus and analysis method, the specimen surface is bored or a deposition pile is formed in the hole bored in the specimen surface. A measuring instrument is provided for measuring a height of the hole bored in the specimen surface or a height of the deposition pile formed in the hole. During fabrication of boring the hole in the specimen surface or fabrication of filling the hole bored in the specimen surface, an image of an area encompassing the hole and the depth of the hole or the height of the deposition pile are displayed.
摘要:
An ion beam processing apparatus includes an ion beam irradiation optical system that irradiate a rectangular ion beam to a sample held on a first sample stage, an electron beam irradiation optical system that irradiates an electron beam to the sample, and a second sample stage on which a test piece, extracted from the sample by a probe, is mounted. An angle of irradiation of the ion beam can be tilted by rotating the second sample stage about a tilting axis. A controller controls the width of skew of an intensity profile representing an edge of the rectangular ion beam in a direction perpendicular to a first direction in which the tilting axis of the second sample stage is projected on the second sample stage surface so that the width will be smaller than the width of skew of an intensity profile representing another edge of the ion beam in a direction parallel to the first direction.