摘要:
This film forming method comprises: a first material gas supply step (A) wherein a first raw material gas is supplied over the substrate to be processed so that a first chemical adsorption layer, which is adsorbed on the substrate by means of the first raw material gas is formed on the substrate to be processed, a second material gas supply step (C) wherein a second raw material that is different from the first raw material gas is supplied over the substrate, on which the first chemical adsorption layer has been formed, so that a second chemical adsorption layer, which is adsorbed by means of the second raw material gas, is formed on the first chemical adsorption layer; and a plasma processing step (E) wherein a plasma processing is carried on at least the first and second chemical adsorption layers using microwave plasma.
摘要:
This film forming method comprises: a first material gas supply step (A) wherein a first raw material gas is supplied over the substrate to be processed so that a first chemical adsorption layer, which is adsorbed on the substrate by means of the first raw material gas is formed on the substrate to be processed, a second material gas supply step (C) wherein a second raw material that is different from the first raw material gas is supplied over the substrate, on which the first chemical adsorption layer has been formed, so that a second chemical adsorption layer, which is adsorbed by means of the second raw material gas, is formed on the first chemical adsorption layer; and a plasma processing step (E) wherein a plasma processing is carried on at least the first and second chemical adsorption layers using microwave plasma.
摘要:
A semiconductor device manufacturing method, the method including: forming a semiconductor element on a semiconductor substrate; and by using microwaves as a plasma source, forming an insulation film on the semiconductor element by performing a CVD process using microwave plasma having an electron temperature of plasma lower than 1.5 eV and an electron density of plasma higher than 1×1011 cm−3 near a surface of the semiconductor substrate.
摘要翻译:一种半导体器件制造方法,所述方法包括:在半导体衬底上形成半导体元件; 并且通过使用微波作为等离子体源,通过使用具有低于1.5eV的等离子体的电子温度和高于1×10 11 cm -3的等离子体的电子密度的微波等离子体进行CVD工艺,在半导体元件上形成绝缘膜 半导体衬底的表面。
摘要:
A silicon compound gas, an oxidizing gas, and a rare gas are supplied into a chamber (2) of a plasma processing apparatus (1). A microwave is supplied into the chamber (2), and a silicon oxide film is formed on a target substrate with plasma generated by the microwave. A partial pressure ratio of the rare gas is 10% or more of a total gas pressure of the silicon compound gas, the oxidizing gas, and the rare gas, and an effective flow ratio of the silicon compound gas and the oxidizing gas (oxidizing gas/silicon compound gas) is not less than 3 but not more than 11.
摘要:
Word line driver circuitry for selectively charging and discharging one or more word lines is provided. The driver circuitry uses a dual transistor topology, where a first transistor is driven by a signal, DOUT, and a second transistor is driven by a time-delayed complement of the DOUT, DOUT_BAR. The time delay prevents DOUT_BAR from changing its state immediately after DOUT changes state. As result, both the first and second transistors are turned ON at the same time for a predetermined of time. It is during this time that the voltage on the word line is rapidly driven to a LOW voltage. When the second transistor turns OFF, high impedance circuitry limits the flow of leakage current. This minimizes leakage current when the word line is OFF and when short circuit conditions are present between two or more word lines or between a word line and a bit line.
摘要:
A silicon compound gas, an oxidizing gas, and a rare gas are supplied into a chamber (2) of a plasma processing apparatus (1). A microwave is supplied into the chamber (2), and a silicon oxide film is formed on a target substrate with plasma generated by the microwave. A partial pressure ratio of the rare gas is 10% or more of a total gas pressure of the silicon compound gas, the oxidizing gas, and the rare gas, and an effective flow ratio of the silicon compound gas and the oxidizing gas (oxidizing gas/silicon compound gas) is not less than 3 but not more than 11.
摘要:
A dielectric TEM resonator, whose resonant frequency is adjustable in both directions after being incorporated in a circuit, is disclosed. A first dielectric TEM resonator comprises a metal member disposed near an open end of a resonator body and coupled to an inner or outer conductor of the resonator body. The resonant frequency is adjusted by adjusting a distance between the open end and the metal member. A dielectric material of a second dielectric TEM resonator is partially exposed, and a dielectric board for mounting the resonator body is also exposed in a corresponding part to the exposed part of the dielectric material. The exposed part of the dielectric board is partially covered with a metal plate. The resonant frequency is adjusted by adjusting the covered area.
摘要:
A facing material spray apparatus including a first tank for housing a facing material and regulating its concentration, first agitating means for agitating the facing material in the first tank, a second tank, for receiving the facing material from the first tank, provided in the vicinity of the first tank with its bottom positioned below the bottom of the first tank, second agitating means for agitating the facing material in the second tank, a connecting pipe for connecting the first and second tanks to each other and causing the facing material in the first tank to naturally flow into the second tank, a valve attached to the connecting pipe for opening and closing a facing material supply passage, a facing pump removably attached to the second tank for sucking the facing material in the second tank, a nozzle attached to the facing pump through a hose for spraying the sucked facing material on a mold, and a facing material receiving base provided in the vicinity of the second tank for receiving the facing material sprayed on the mold and recovering the received facing material to the second tank by virtue of its natural flow.
摘要:
A method of manufacturing a semiconductor device, includes the steps of: forming a first insulating layer (3), having at a surface thereof a concave area to which a contact hole is to be formed and a convex area, on a semiconductor substrate (7); forming a high resistance portion (4) including polycrystalline silicon, on the convex area; and forming a protection layer (2) including SiN on the first insulating layer and the high resistance portion. The method also includes the steps of: removing a portion of the formed protection layer at the concave area such that the removed portion includes an area to form the contact hole and is larger than the area to form the contact hole; and forming a second insulating layer (5) including at least boron as an impurity on the protection layer and the first insulating layer. The method further includes the steps of: forming the contact hole at the concave area from the second insulating layer to a surface of the semiconductor substrate by means of an etching technique; and forming a metal wiring (6) in the contact hole and on the second insulating layer.
摘要:
A method for fabricating a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes forming a gate insulating film, in which at least one film selected from the group of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
摘要翻译:一种制造半导体器件的方法,该半导体器件包括构成半导体层并包括形成栅极绝缘膜的GaN(氮化镓),其中在氮化物层上形成选自SiO 2膜和Al 2 O 3膜中的至少一种膜 通过使用微波等离子体形成含GaN的GaN,并且将形成的膜用作栅极绝缘膜的至少一部分。