Abstract:
In one embodiment of the invention, there is provided a tool for annealing a magnetic stack. The tool includes a housing defining a heating chamber; a holding mechanism to hold at least one wafer in a single line within the heating chamber, a heating mechanism to heat the at least one wafer; and a magnetic field generator to generate a magnetic field whose field lines pass through the single line of wafers during a magnetic annealing process; wherein the holding mechanism comprises a wafer support of holding the single line of wafers between the heating mechanism and the magnetic field generator. The tool may be a rapid thermal processor retrofitted with the magnetic field generator.
Abstract:
A novel magnetic memory cell utilizing nanotubes as conducting leads. The magnetic memory cell may be built based on MTJ (Magnetic Tunnel Junction) or GMR (Giant Magneto Resistance) sensors or devices of similar nature. A SET (Single Electron Transistor) made of semiconducting nanotubes may be used as access devices and/or to build peripheral circuitry.
Abstract:
Memory circuit and method for at least partially dissipating an external magnetic field before the magnetic field affects operation of an array of addressable magnetic storage element stacks in the memory circuit. Multiple dummy magnetic storage element stacks are provided around the periphery of the array. Each of the dummy stacks is substantially circular for orienting along the external magnetic field, thereby causing the dissipation. Each of the addressable and the dummy stacks may be formed with a magnetic tunnel junction (MTJ).
Abstract:
Embodiments of the invention disclose magnetic memory cell configurations in which a magnetic storage structure is coupled to an upper metal layer with minimal overlay margin. This greatly reduces a size of the memory cell.
Abstract:
A magnetic memory cell in which a sensor is magnetically coupled to a magnetic media wherein the separation of the magnetic media from the sensor permits each to be magnetically optimized separate from the other, thus improving defect tolerance and minimizing the magnetic influence of neighboring cells in an array on one another. In an embodiment, the read circuitry is positioned so that no read current passes through the media during a read operation. In an alternative embodiment, processing is simplified but the read current is allowed to pass through the media.
Abstract:
Disclosed is a nonvolatile magnetic memory cell, comprising: a) a switchable magnetic element; b) a word line and a bit line to energize the switchable magnetic element; and c) a magnetic field boosting material positioned adjacent to at least one of the word line and the bit line to boost a magnetic field generated by current flowing therein.
Abstract:
Embodiments of the present invention disclose an MRAM device having a plurality of magnetic memory cells grouped into words, and write conductors for carrying write currents to write to the memory cells, wherein at least some of the write conductors have a reduced cross-sectional area in the vicinity of a group of memory cells.
Abstract:
Integrated circuit comprising a sensing unit that includes a sensing circuit, two conductors and a magnetic storage element. The sensing circuit monitors a voltage drop across the element when a current is passed between the conductors with the element in between. The voltage drop is pre-calibrated to indicate a change in conductivity in the element that is caused by an external magnetic field. Advantageously, this indication is usable particularly for assessing a possible data corruption in a magnetic memory circuit in the integrated circuit, due to stray and external magnetic fields. Methods of using the sensing unit are also proposed.
Abstract:
Memory circuit comprising an addressable magnetic tunnel junction (MTJ) stack, forming a magnetic storage element in the circuit. The MTJ stack comprises a tunnel oxide layer between a free layer and a fixed layer. A stress inducing layer is disposed adjacent to the free layer to provide tensile or compressive stress to the free layer, in order to manipulate a magnetic field that is required to write a bit into the MTJ stack. Method of using the memory circuit is also proposed.
Abstract:
Memory cell comprising two conductors, with a serially connected magnetic storage element and a Schottky diode between the two conductors. The Schottky diode provides a unidirectional conductive path between the two conductors and through the element. The Schottky diode is formed between a metal layer in one of the two conductors and a processed junction layer. Methods for process and for operation of the memory cell are also disclosed. The memory cell using the Schottky diode can be designed for high speed operation and with high density of integration. Advantageously, the junction layer can also be used as a hard mask for defining the individual magnetic storage element in the memory cell. The memory cell is particularly useful for magnetic random access memory (MRAM) circuits.