Abstract:
Disclosed herein is a battery module having a plurality of battery cells electrically connected to each other, the battery module including a voltage sensing unit including voltage sensing terminals electrically connected to electrode terminal connection portions of the battery cells and a conduction part connected to the voltage sensing terminals to transmit voltages detected by the voltage sensing terminals to a module control unit and a signal cutoff unit located between the voltage sensing terminals and the conduction part to interrupt transmission of the detected voltages when a short circuit occurs in the conduction part.
Abstract:
Disclosed herein is a battery module configured to have a structure in which two or more unit modules, each of which includes one or more battery cells, a frame member configured to have a structure to surround outer edges of the one or more battery cells, the frame member including cooling manifold elements located at opposite ends of one side of the outer edges of the battery cells, and a cooling member mounted in the frame member such that the cooling member faces the battery cells while being in contact with the battery cells, the cooling member including a plate-shaped cooling fin having a shape and a size corresponding to those of the battery cells and a coolant conduit having a hollow structure located at an outer edge of the cooling fin, are arranged while being in tight contact with each other, wherein the coolant conduit includes a coolant inlet port and a coolant outlet port connected to the cooling manifold elements of the frame member of each of the unit modules in a communicating fashion.
Abstract:
Disclosed herein is a battery module including a battery cell assembly having two or more battery cells laterally arranged such that the battery cells tightly contact each other or are adjacent to each other, a front plate and a rear plate fixed to outermost battery cells of the battery cell assembly such that the front plate and the rear plate surround the outermost battery cells of the battery cell assembly, an electrically insulative cover member mounted at an upper end of the battery cell assembly, the cover member being provided with through holes, through which electrode terminals of the battery cells extend, conductive connection parts arranged in a state in which the conductive connection parts are mounted at the cover member, the conductive connection parts being connected to the electrode terminals of the battery cells for detecting voltages of the battery cells while achieving electrical connection between the battery cells, cooling members interposed between the battery cells, each of the cooling members being provided with a coolant flow part having a hollow structure, in which a coolant flows, and a manifold connected to the cooling members for moving the coolant in the coolant flow part.
Abstract:
Disclosed herein is a battery pack including at least one battery module including a battery cell stack constituted by two or more stacked battery cells that can be charged and discharged and a pack case for surrounding an outside of the battery module, wherein a liquid refrigerant isolated from an inner space of the pack case removes heat conducted from the battery cells through cooling of the pack case.
Abstract:
Disclosed is a battery pack configured such that a plurality of battery modules is connected to each other in series in a state in which the modules are in contact with each other or stacked adjacent to each other, the pack being fixed such that a stacked state of the modules is maintained even when volume of the modules is changed during charge and discharge, the pack including a cut-off portion connected in series to an electrical connection circuit between modules, a fixing member to fix a circuit breaker to at least one outer surface of the pack, and the breaker configured to be electrically conducted when an outer surface of at least one module expands by a reference volume value or more, the breaker being connected in series to the electrical connection circuit to short-circuit the cut-off portion when electric conduction is performed due to swelling of the modules.
Abstract:
Disclosed herein is A battery pack comprising: a pack housing; a base plate; at least two battery modules arranged such that the battery modules are located in a space defined between the pack housing and the base plate, each battery module including a plurality of battery cells or unit modules which can be charged and discharged; a first wall located at a first side of the base plate; a second wall located at a second side of the base plate; an external input terminal and an external output terminal are located at both of the first wall and the second wall, the battery modules being connected to the external input and output terminals in a state in which the battery modules are electrically connected in series or in parallel to each other; and a capacitor is present at the first or second wall adjacent to a corresponding one of the external input and output terminals, the capacitor being electrically connected to said corresponding one of the external input and output terminals.
Abstract:
Disclosed herein is a battery module including a battery cell assembly constituted by at least two battery cells, a front plate and a rear plate fixed to the battery cell assembly such that the front plate and the rear plate cover outermost ones of the battery cells, an electrically insulative cover member mounted at an upper end of the battery cell assembly, the electrically insulative cover member being provided with through holes, through which electrode terminals of the battery cells extend, a PCB mounted on a bottom of the cover member, a plurality of conductive connection parts arranged on the cover member, the conductive connection parts being connected to the electrode terminals of the battery cells and the PCB, and a lower molding part located on the PCB at the bottom of the cover member, the lower molding part covering the connection between the PCB and the conductive connection parts.
Abstract:
Disclosed herein is a battery pack configured to have a structure in which two or more battery modules, each of which includes a plurality of battery cells or unit modules which can be charged and discharged, are arranged such that the battery modules are mounted in a space defined between a pack housing and a base plate, the battery pack including the base plate on which the arranged battery modules are loaded, a sensing assembly mounted at upper ends of the battery modules for detecting voltage of the battery modules, a pair of tension bars mounted at the upper ends of the battery modules in a direction in which the battery modules are arranged for supporting the battery modules, a battery management system (BMS) mounted at an outside of an outermost one of the battery modules in a state in which the BMS is adjacent to the outermost one of the battery modules, the pack housing for surrounding the battery modules and the BMS, a lower end of the pack housing being coupled to the base plate, and a spacer disposed in a space defined between an inner surface of the pack housing and outer surfaces of the battery modules for restraining motion of upper end parts of the battery modules.
Abstract:
Disclosed herein is A battery pack comprising: a pack housing; a base plate; at least two battery modules arranged such that the battery modules are located in a space defined between the pack housing and the base plate, each battery module including a plurality of battery cells or unit modules which can be charged and discharged; a first wall located at a first side of the base plate; a second wall located at a second side of the base plate; an external input terminal and an external output terminal are located at both of the first wall and the second wall, the battery modules being connected to the external input and output terminals in a state in which the battery modules are electrically connected in series or in parallel to each other; and a capacitor is present at the first or second wall adjacent to a corresponding one of the external input and output terminals, the capacitor being electrically connected to said corresponding one of the external input and output terminals.
Abstract:
Disclosed herein is a battery pack including a battery module assembly configured to have a structure in which two or more battery modules, each of which includes battery cells arranged in an upright state such that electrode terminals of the battery cells are directed upward, are arranged such that the battery modules are adjacent to each other, and outward protrusions are formed at a lower end of one side or lower ends of opposite sides of each of the battery modules, a base plate, on a top of which the battery module assembly is loaded, and a hold down bracket having one side region covering the outward protrusions of the battery modules and the other side region coupled to the base plate so as to correctly fix the respective battery modules of the battery module assembly to the base plate.