Abstract:
The embodiments of the present invention relate to a light emitting device, a method for manufacturing a light emitting device, a light emitting device package, and a lighting device.A light emitting device according to an embodiment has: a light emitting structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer; a passivation layer disposed on the light emitting structure; and an insulating reflective layer disposed on the passivation layer.The passivation layer may include a first region disposed on an upper surface of the light emitting structure, and a second region disposed on side surfaces of the first conductivity type semiconductor layer, the second conductivity type semiconductor layer, and the active layer.The insulating reflective layer may be disposed on the first region, and an end portion of the insulating reflective layer may be disposed apart from an end portion of the first region.
Abstract:
A light emitting device is described, including a second conductive type semiconductor layer; an active layer over the second conductive type semiconductor layer; a first conductive type semiconductor layer over the active layer; a second electrode in a first region under the second conductive type semiconductor layer; a current blocking layer including a metal; and a first electrode over the first conductive type semiconductor layer. Further, the first electrode has at least one portion that vertically overlaps the current blocking layer.
Abstract:
A semiconductor device according to an embodiment may include a light emitting structure, a first electrode, a second electrode, a first insulating reflective layer, a second insulating reflective layer, a first bonding pad, and a second bonding pad. The light emitting structure may include a first conductivity type semiconductor layer and a second conductivity type semiconductor layer. The first insulating reflective layer may be disposed on the first electrode and the second electrode, and may include a first opening exposing an upper surface of the first electrode. The second insulating reflective layer may be disposed on the first electrode and the second electrode, and disposed spaced apart from the first insulating reflective layer, and may include a second opening exposing an upper surface of the second electrode. The first bonding pad may be electrically connected to the first electrode through the first opening. The second bonding pad may be electrically connected to the second electrode through the second opening.
Abstract:
The light emitting device package disclosed in the embodiment includes: first and second frames having first and second through holes; a body disposed between the first and second frames; a light emitting device including a first bonding pad and a second bonding pad; and a conductive part in the first and second through holes. wherein at least one of the first and second bonding pads faces the first and second frames and overlaps with the first and second through holes and includes a contact region contacting the conductive part and a first non-contact non-contacting the conducive part.
Abstract:
Disclosed herein is a light emitting device exhibiting improved current spreading. The disclosed light emitting device includes a light emitting structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type and second conductivity type semiconductor layers, a first electrode disposed on the first conductivity type semiconductor layer, and a second electrode disposed on the second conductivity type semiconductor layer. The light emitting structure includes a mesa etching region where the second conductivity type semiconductor layer, active layer, and first conductivity type semiconductor layer are partially etched, thereby exposing a portion of the first conductivity type semiconductor layer. The first electrode is disposed on the exposed portion of the first conductivity type semiconductor layer. A first electrode layer is disposed between the second conductivity type semiconductor layer and the second electrode. A second electrode layer is disposed between portions of the first electrode layer spaced from each other at opposite sides of the mesa etching region.
Abstract:
Disclosed is a light emitting device. The light emitting device comprises a light emitting structure comprising a plurality of compound semiconductor layers; and a light extraction structure on the light emitting structure. The light extraction structure comprises a plurality of first layers and a plurality of second layers which are alternately disposed with each other to have a negative refraction index.
Abstract:
A semiconductor device according to the embodiment may include a light emitting structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer; a first bonding pad disposed on the light emitting structure and electrically connected to the first conductivity type semiconductor layer; a second bonding pad disposed on the light emitting structure and spaced apart from the first bonding pad, and electrically connected to the second conductivity type semiconductor layer; and a reflective layer disposed on the light emitting structure and disposed between the first bonding pad and the second bonding pad. According to the semiconductor device of the embodiment, each of the first bonding pad and the second bonding pad includes a porous metal layer having a plurality of pores and a bonding alloy layer disposed on the porous metal layer.
Abstract:
A light emitting device is described, including a second conductive type semiconductor layer; an active layer over the second conductive type semiconductor layer; a first conductive type semiconductor layer over the active layer; a second electrode in a first region under the second conductive type semiconductor layer; a current blocking layer including a metal; and a first electrode over the first conductive type semiconductor layer. Further, the first electrode has at least one portion that vertically overlaps the current blocking layer.
Abstract:
Disclosed herein is a light emitting device exhibiting improved current spreading. The disclosed light emitting device includes a light emitting structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type and second conductivity type semiconductor layers, a first electrode disposed on the first conductivity type semiconductor layer, and a second electrode disposed on the second conductivity type semiconductor layer. The light emitting structure includes a mesa etching region where the second conductivity type semiconductor layer, active layer, and first conductivity type semiconductor layer are partially etched, thereby exposing a portion of the first conductivity type semiconductor layer. The first electrode is disposed on the exposed portion of the first conductivity type semiconductor layer. A first electrode layer is disposed between the second conductivity type semiconductor layer and the second electrode. A second electrode layer is disposed between portions of the first electrode layer spaced from each other at opposite sides of the mesa etching region.