Abstract:
Methods and apparatus are provided for integrated-interleaved Low Density Parity Check (LDPC) coding and decoding. Integrated-interleaved LDPC encoding is performed by obtaining at least a first data element and a second data element; systematically encoding the at least first data element using a submatrix H0 of a sparse parity check matrix H1 to obtain at least a first codeword; truncating the at least first data element to obtain at least a first truncated data element; systematically encoding the at least second data element and the at least first truncated data element using the sparse parity check matrix H1 to obtain a nested codeword; and generating a second codeword based at least in part on a combination of the first codeword and the nested codeword. Integrated-interleaved LDPC decoding is also provided.
Abstract:
Described embodiments provide a media controller that performs error correction on data read from a solid-state media. The media controller receives a read operation from a host device to read one or more given read units of the solid-state media. The media controller reads the data for the corresponding read units from the solid-state media employing initial values for one or more read threshold voltages. Only if a disparity between an actual number of bits at a given logic level included in the read data and an expected number of bits at the given logic level included in the read data has not reached a predetermined threshold, the media controller decodes the read data and provides the decoded data to the host device.
Abstract:
A method and system for constructing a generator matrix is disclosed. The method includes: receiving a parity check matrix H, wherein the parity check matrix H includes multiple circulant sub-matrices; rearranging the parity check matrix H by column and row permutations to obtain a rearranged parity check matrix H′; and constructing the generator matrix G based on the rearranged parity check matrix H′.
Abstract:
A method of optimizing solid state drive (SSD) soft retry voltages comprises limiting a number of voltage reads and properly spacing and determining the reference voltage at which each voltage is read based on desired Bit Error Rate (BER) and channel throughput. The method determines each reference voltage for a number of soft retry voltage reads based on a hard decision read. The spacing between each read reference voltage is constant since each SSD type requires a number of reads for an accurate presentation of soft retry voltages. The voltage distance between each successive read is limited to a multiple of the constant spacing while the multiple is based on success or failure of the first read. The method determines a limited number of reads, the constant spacing between reads, and a desired reference voltage for each read, thereby increasing valuable throughput of the channel and decreasing BER.
Abstract:
A method of optimizing solid state drive (SSD) soft retry voltages comprises limiting a number of voltage reads and properly spacing and determining the reference voltage at which each voltage is read based on desired Bit Error Rate (BER) and channel throughput. The method determines each reference voltage for a number of soft retry voltage reads based on a hard decision read. The spacing between each read reference voltage is constant since each SSD type requires a number of reads for an accurate presentation of soft retry voltages. The voltage distance between each successive read is limited to a multiple of the constant spacing while the multiple is based on success or failure of the first read. The method determines a limited number of reads, the constant spacing between reads, and a desired reference voltage for each read, thereby increasing valuable throughput of the channel and decreasing BER.
Abstract:
An apparatus for reading a non-volatile memory includes a tracking module operable to calculate means and variances of voltage level distributions in a non-volatile memory and to calculate at least one reference voltage to be used when reading the non-volatile memory based on the means and variances, a likelihood generator operable to calculate at least one other reference voltage to be used when reading the non-volatile memory, wherein the at least one other reference voltage is based at least in part on a predetermined likelihood value constellation, and to map read patterns from the non-volatile memory to likelihood values, and a read controller operable to read the non-volatile memory using the at least one reference voltage and the at least one other reference voltage to yield the read patterns.
Abstract:
A method and system for constructing a generator matrix is disclosed. The method includes: receiving a parity check matrix H, wherein the parity check matrix H includes multiple circulant sub-matrices; rearranging the parity check matrix H by column and row permutations to obtain a rearranged parity check matrix H′; and constructing the generator matrix G based on the rearranged parity check matrix H′.
Abstract:
A low density parity check decoder includes a variable node processor operable to generate variable node to check node messages and to calculate perceived values based on check node to variable node messages, a check node processor operable to generate the check node to variable node message vectors and to calculate checksums based on the variable node to check node messages, and a convergence detector and bit map generator operable to convergence of the perceived values and to generate at least one bit map that identifies variable nodes that are connected to check nodes with unsatisfied parity checks.
Abstract:
Described embodiments provide a media controller that performs error correction on data read from a solid-state media. The media controller receives a read operation from a host device to read one or more given read units of the solid-state media. The media controller reads the data for the corresponding read units from the solid-state media employing initial values for one or more read threshold voltages. Only if a disparity between an actual number of bits at a given logic level included in the read data and an expected number of bits at the given logic level included in the read data has not reached a predetermined threshold, the media controller decodes the read data and provides the decoded data to the host device.
Abstract:
Methods and apparatus are provided for integrated-interleaved Low Density Parity Check (LDPC) coding and decoding. Integrated-interleaved LDPC encoding is performed by obtaining at least a first data element and a second data element; systematically encoding the at least first data element using a submatrix H0 of a sparse parity check matrix H1 to obtain at least a first codeword; truncating the at least first data element to obtain at least a first truncated data element; systematically encoding the at least second data element and the at least first truncated data element using the sparse parity check matrix H1 to obtain a nested codeword; and generating a second codeword based at least in part on a combination of the first codeword and the nested codeword. Integrated-interleaved LDPC decoding is also provided.