摘要:
The present invention provides a method for aligning nanowires which can be used to fabricate devices comprising nanowires that has well-defined and controlled orientation independently on what substrate they are arranged on. The method comprises the steps of providing nanowires (1) and applying an electrical field (E) over the population of nanowires (1), whereby an electrical dipole moment of the nanowires makes them align along the electrical field (E). Preferably the nanowires are dispersed in a fluid during the steps of providing and aligning. When aligned, the nanowires can be fixated, preferably be deposition on a substrate (2). The electrical field can be utilized in the deposition. Pn-junctions or any net charge introduced in the nanowires (1) may assist in the aligning and deposition process. The method is suitable for continuous processing, e.g. in a roll-to-roll process, on practically any substrate materials and not limited to substrates suitable for particle assisted growth.
摘要:
The present invention provides a method for aligning nanowires which can be used to fabricate devices comprising nanowires that has well-defined and controlled orientation independently on what substrate they are arranged on. The method comprises the steps of providing nanowires (1) and applying an electrical field (E) over the population of nanowires (1), whereby an electrical dipole moment of the nanowires makes them align along the electrical field (E). Preferably the nanowires are dispersed in a fluid during the steps of providing and aligning. When aligned, the nanowires can be fixated, preferably be deposition on a substrate (2). The electrical field can be utilised in the deposition. Pn-junctions or any net charge introduced in the nanowires (1) may assist in the aligning and deposition process. The method is suitable for continuous processing, e.g. in a roll-to-roll process, on practically any substrate materials and not limited to substrates suitable for particle assisted growth.
摘要:
The present invention provides a method and a system for forming wires (1) that enables a large scale process combined with a high structural complexity and material quality comparable to wires formed using substrate-based synthesis. The wires (1) are grown from catalytic seed particles (2) suspended in a gas within a reactor. Due to a modular approach wires (1) of different configuration can be formed in a continuous process. In-situ analysis to monitor and/or to sort particles and/or wires formed enables efficient process control.
摘要:
The present invention provides a method and a system for forming wires (1) that enables a large scale process combined with a high structural complexity and material quality comparable to wires formed using substrate-based synthesis. The wires (1) are grown from catalytic seed particles (2) suspended in a gas within a reactor. Due to a modular approach wires (1) of different configuration can be formed in a continuous process. In-situ analysis to monitor and/or to sort particles and/or wires formed enables efficient process control.
摘要:
A method of forming a nanostructure having the form of a tree, comprises a first stage and a second stage. The first stage includes providing one or more catalytic particles on a substrate surface, and growing a first nanowhisker via each catalytic particle. The second stage includes providing, on the periphery of each first nanowhisker, one or more second catalytic particles, and growing, from each second catalytic particle, a second nanowhisker extending transversely from the periphery of the respective first nanowhisker. Further stages may be included to grow one or more further nanowhiskers extending from the nanowhisker(s) of the preceding stage. Heterostructures may be created within the nanowhiskers. Such nanostructures may form the components of a solar cell array or a light emitting flat panel, where the nanowhiskers are formed of a photosensitive material. A neural network may be formed by positioning the first nanowhiskers close together so that adjacent trees contact one another through nanowhiskers grown in a subsequent stage, and heterojunctions within the nanowhiskers create tunnel barriers to current flow.