Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
Methods of forming features are disclosed. One method comprises forming a resist over a pool of acidic or basic material on a substrate structure, selectively exposing the resist to an energy source to form exposed resist portions and non-exposed resist portions, and diffusing acid or base of the acidic or basic material from the pool into proximal portions of the resist. Another method comprises forming a plurality of recesses in a substrate structure. The plurality of recesses are filled with a pool material comprising acid or base. A resist is formed over the pool material and the substrate structure and acid or base is diffused into adjacent portions of the resist. The resist is patterned to form openings in the resist. The openings comprise wider portions distal to the substrate structure and narrower portions proximal to the substrate structure. Additional methods and semiconductor device structures including the features are disclosed.
Abstract:
A method of forming a pattern on a substrate includes forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate. Longitudinally elongated second lines and second sidewall spacers are formed longitudinally along opposite sides of the second lines. The second lines and the second sidewall spacers cross elevationally over the first lines and the first sidewall spacers. The second sidewall spacers are removed from crossing over the first lines. The first and second lines are removed in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate. Other methods are disclosed.
Abstract:
A method of forming a pattern on a substrate comprises forming spaced, upwardly-open, cylinder-like structures projecting longitudinally outward of a base. Sidewall lining is formed over inner and over outer sidewalls of the cylinder-like structures, and that forms interstitial spaces laterally outward of the cylinder-like structures. The interstitial spaces are individually surrounded by longitudinally-contacting sidewall linings that are over outer sidewalls of four of the cylinder-like structures. Other embodiments are disclosed, including structure independent of method.
Abstract:
Methods of forming semiconductor devices and features in semiconductor device structures include conducting an anti-spacer process to remove portions of a first mask material to form first openings extending in a first direction. Another anti-spacer process is conducted to remove portions of the first mask material to form second openings extending in a second direction at an angle to the first direction. Portions of a second mask material underlying the first mask material at intersections of the first openings and second openings are removed to form holes in the second mask material and to expose a substrate underlying the second mask material.
Abstract:
Methods of forming features are disclosed. One method comprises forming a resist over a pool of acidic or basic material on a substrate structure, selectively exposing the resist to an energy source to form exposed resist portions and non-exposed resist portions, and diffusing acid or base of the acidic or basic material from the pool into proximal portions of the resist. Another method comprises forming a plurality of recesses in a substrate structure. The plurality of recesses are filled with a pool material comprising acid or base. A resist is formed over the pool material and the substrate structure and acid or base is diffused into adjacent portions of the resist. The resist is patterned to form openings in the resist. The openings comprise wider portions distal to the substrate structure and narrower portions proximal to the substrate structure. Additional methods and semiconductor device structures including the features are disclosed.
Abstract:
An imaging device comprising a first region and a second region. Imaging features in the first region and assist features in the second region are substantially the same size as one another and are formed substantially on pitch. Methods of forming an imaging device and methods of forming a semiconductor device structure are also disclosed.
Abstract:
A method of forming a pattern on a substrate comprises forming spaced, upwardly-open, cylinder-like structures projecting longitudinally outward of a base. Sidewall lining is formed over inner and over outer sidewalls of the cylinder-like structures, and that forms interstitial spaces laterally outward of the cylinder-like structures. The interstitial spaces are individually surrounded by longitudinally-contacting sidewall linings that are over outer sidewalls of four of the cylinder-like structures. Other embodiments are disclosed, including structure independent of method.