摘要:
A semiconductor device a field of transistor cells integrated in a semiconductor body. A number of the transistor cells forming a power transistor and at least one of the transistor cells forming a sense transistor. A first source electrode is arranged on the semiconductor body electrically connected to the transistor cell(s) of the sense transistor but electrically isolated from the transistor cells of the power transistor. A second source electrode is arranged on the semiconductor body and covers the transistor cells of both the power transistor and the sense transistor, and at least partially covering the first source electrode in such a manner that the second source electrode is electrically connected only to the transistor cells of the power transistor but electrically isolated from the transistor cells of the sense transistor.
摘要:
Disclosed is a method for producing a controllable semiconductor component. In a semiconductor body with a top side and a bottom side, a first trench protruding from the top side into the semiconductor body and a second trench protruding from the top side into the semiconductor body are formed in a common etching process. The first trench has a first width and the second trench has a second width greater than the first width. Then, in a common process, an oxide layer is formed in the first trench and in the second trench such that the oxide layer fills the first trench and electrically insulates a surface of the second trench. Subsequently, the oxide layer is removed from the first trench completely or at least partly such that the semiconductor body comprises an exposed first surface area arranged in the first trench.
摘要:
Wafers with chips thereon and corresponding chips are provided where test structures or parts thereof are provided in a peripheral chip area of the chip. Corresponding methods are also disclosed.
摘要:
Representative implementations of devices and techniques provide a termination arrangement for a transistor structure. The periphery of a transistor structure may include a recessed area having features arranged to improve performance of the transistor at or near breakdown.
摘要:
A semiconductor device includes a main body having a single crystalline semiconductor body. A layered structure directly adjoins a central portion of a main surface of the main body and includes a hard dielectric layer provided from a first dielectric material with Young's modulus greater than 10 GPa. A stress relief layer directly adjoins the layered structure opposite to the main body and extends beyond an outer edge of the layered structure. Providing the layered structure at a distance to the edge of the main body and covering the outer surface of the layered structures with the stress relief layer enhances device reliability.
摘要:
Disclosed is a semiconductor component arrangement and a method for producing a semiconductor component arrangement. The method comprises producing a trench transistor structure with at least one trench disposed in the semiconductor body and with at least an gate electrode disposed in the at least one trench. An electrode structure is disposed in at least one further trench and comprises at least one electrode. The at least one trench of the transistor structure and the at least one further trench are produced by common process steps. Furthermore, the at least one electrode of the electrode structure and the gate electrode are produced by common process steps.
摘要:
An embodiment of the invention relates to a Seebeck temperature difference sensor that may be formed in a trench on a semiconductor device. A portion of the sensor may be substantially surrounded by an electrically conductive shield. A plurality of junctions may be included to provide a higher Seebeck sensor voltage. The shield may be electrically coupled to a local potential, or left electrically floating. A portion of the shield may be formed as a doped well in the semiconductor substrate on which the semiconductor device is formed, or as a metal layer substantially covering the sensor. The shield may be formed as a first oxide layer on a sensor trench wall with a conductive shield formed on the first oxide layer, and a second oxide layer formed on the conductive shield. An absolute temperature sensor may be coupled in series with the Seebeck temperature difference sensor.
摘要:
According to an embodiment, a method of forming a semiconductor device includes: providing a wafer having a semiconductor substrate with a first side a second side opposite the first side, and a dielectric region arranged on the first side; mounting the wafer with the first side on a carrier system; etching a deep vertical trench from the second side through the semiconductor substrate to the dielectric region, thereby insulating a mesa region from the remaining semiconductor substrate; and filling the deep vertical trench with a dielectric material.
摘要:
A semiconductor device includes a trench region extending into a drift zone of a semiconductor body from a surface. The semiconductor device further includes a dielectric structure including a first step and a second step along a lateral side of the trench region. The semiconductor device further includes an auxiliary structure of a first conductivity type between the first step and the second step, a gate electrode in the trench region and a body region of a second conductivity type other than the first conductivity type of the drift zone. The auxiliary structure adjoins each one of the drift zone, the body region and the dielectric structure.
摘要:
A method for manufacturing a semiconductor device and semiconductor device. One embodiment provides a semiconductor substrate with an active region and a margin region bordering on the active region. The spacer layer in the margin region is broken through at a selected location and at least part of the spacer layer is removed in the active region using a common process. The location is selected such that at least part of the semiconductor mesa structure is exposed and the spacer layer in the margin region is broken through to the conductive layer and not to the semiconductor substrate.