摘要:
An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
摘要:
An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
摘要:
An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
摘要:
A highly efficient nitride semiconductor element having an opposed terminal structure, whose terminals face each other. The nitride semiconductor element includes a conductive layer, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal, on a supporting substrate successively. The first terminal and a first insulating protect layer are interposed between the conductive layer and a first conductive type nitride semiconductor layer of the nitride semiconductor.
摘要:
A method of producing an efficient nitride semiconductor element having an opposed terminal structure. The method includes a growing step for growing the nitride semiconductor further having an undoped GaN layer on a different materials substrate; subsequently, an attaching step for attaching the supporting substrate to the first conductive type nitride semiconductor layer side of the nitride semiconductor and interposing a first terminal between them; and subsequently, an exposing step for exposing the second conductive type nitride semiconductor layer by eliminating the different material substrate and the undoped GaN.
摘要:
An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.