摘要:
A semiconductor integrated circuit has a semiconductor output device (3) , a sensor (5) generating an electric signal (7) relevant to heat generation (6) of the output device (3) and a microprocessor unit MPU 2, inside a chip (1). The MPU (2) is constructed of a memory (20) and CPU (22). The electric signal (7) generated from the sensor (5) is processed by the CPU (22) in accordance with a stored program of the memory (20). Accordingly, the drivability of the semiconductor output device (3) can be set in an optimum state corresponding to changes in chip temperature including changes that are only momentary.
摘要:
A method of fabricating semiconductor devices which include vertical elements and control elements. A well is formed by etching in a semiconductor substrate of a first conductivity type, and a first epitaxial layer having a second conductivity type opposite to the first conductivity type is epitaxially grown, followed by etching and/or grinding and/or polishing to fill said well. Further, a second epitaxial layer of the first conductivity type is epitaxially grown on the substrate and on the first epitaxial layer, and an impurity-doped layer of the second conductivity type for isolation is formed in the second epitaxial layer to penetrate therethrough. A first element is formed in the second epitaxial layer in a portion that corresponds to the well, and a second element having a vertical structure and having a current capability higher than that of the first element is formed except a portion of the second epitaxial layer that corresponds to the well.
摘要:
A switching circuit has switching elements for passing-through or cutting-off signals of a positive pulse, which is a rectangular pulse rising from a low level and falling after having kept a high level for a certain time as a high voltage input signal, and a negative pulse, which is a rectangular pulse falling from a high level and rising after having kept a low level for a certain time, the switching circuit being applied to a capacitive load driving device.
摘要:
In a method for driving a display device, by which energy stored in a plurality of electrodes serving as a capacitive load is recovered through switches, current paths for charging said electrodes from a charge supplying source differ from current paths for discharging the electrodes for the energy recovery.
摘要:
An insulated gate semiconductor device contains a protective element for protecting the gate electrode of an insulated gate field effect transistor. The protective element is formed of the same semiconductor layer as that of the gate electrode of the insulated gate field effect transistor and is formed integrally with the gate electrode on an insulating film formed on the surface of a semiconductor substrate.
摘要:
An insulated-gate semiconductor device wherein a first region is formed in the surface of a semiconductor substrate, the first region having a conductivity type opposite to that of the substrate, two insulated-gate FET's are formed within the first region, the drain of the first insulated-gate FET and that of the second insulated-gate FET are made common, the drains are electrically connected to the first region, and the gate of the first insulated-gate FET and the source of the second insulated-gate FET, and the gate of the second insulated-gate FET and the source of the first insulated-gate FET are respectively connected, thereby to prevent the occurrence of a negative resistance.
摘要:
An insulated gate type field effect transistor for high power which has a low conductivity region surrounding a drain region and an offset gate region having a further lower conductivity adjoined thereto, wherein the length and impurity concentration are designed according to the electric characteristics of the transistor. A combination of P channel and N channel type transistors having substantially the same electric characteristics and an audio amplifying circuit using the combination are also disclosed.
摘要:
A semiconductor integrated circuit device is provided to include a vertical type MOSFET and a gate protection element for the MOSFET. The vertical type MOSFET is made up of a silicon layer of n-type conductivity formed on an n.sup.+ -type silicon substrate, a base region of p-type conductivity formed in the surface of the silicon layer of n-type conductivity, an n.sup.+ -type source region provided in the base region, and a gate electrode formed on a portion of the base region through a gate insulating film. The silicon substrate serves as the drain. The gate protection element is formed of a polycrystalline silicon layer which is provided on the base region through an insulating film and includes at least one pn junction. By virtue of forming the gate protection element over the base region rather than directly over the substrate, a more stable operation is achieved.
摘要:
A method for fabrication a vertical MOSFET which contains a protective element for protecting the gate electrode of an insulated gate field effect transistor. The protective element is formed of the same semiconductor layer as that of the gate electrode of the insulated gate field effect transistor and is formed integrally with the gate electrode on an insulating film formed on the surface of a semiconductor substrate.
摘要:
In an insulated gate field effect transistor having a source region and a drain region of the P-conductivity type which are disposed in surface portions of a semiconductor substrate of the N-conductivity type in a manner to be spaced apart from each other, a gate electrode being disposed through an insulating film on the substrate between the source region and the drain region, an insulated gate field effect transistor wherein said drain region is disposed apart from said gate electrode, two regions of an intermediate region and a high resistance region which are of the P-conductivity type and which successively extend from said drain region towards the side of said gate electrode are disposed in surface portions of the substrate situated between said drain region and said gate electrode, said intermediate region having an impurity concentration lower than that of said drain region, said high resistance region having an impurity concentration lower than that of said intermediate region, and a source electrode extends over and beyond said gate electrode and said high resistance region through said insulating film and terminates over said intermediate region.