摘要:
An over-erased bit correction structure is provided for performing a correction operation on over-erased memory cells in an array of flash EEPROM memory cells during programming operations so as to render high endurance. Sensing circuitry (23) is used to detect column leakage current indicative of an over-erased bit. If an over-erased bit is determined, a pulse counter (25) is activated so as to apply programming pulses to the control gate of the selected memory cell so as to program back the negative threshold voltage of the over-erased bit to a positive voltage.
摘要:
A flash EEPROM cell array is erased by applying a zero reference voltage to the bulk substrate of the cell, a relatively high negative voltage to the control gate of the cell and a relatively low positive voltage to the source region of the cell. Because of a relatively low reverse voltage developed between the source region of the cell and the bulk substrate, the generation of hot holes is inhibited and improved performance may be obtained. The source region is preferably single diffused rather than double-diffused so that the cell can occupy a minimum area for a given design rule. The low positive voltage applied to the source is preferably less than or equal to the voltage, V.sub.CC presented at a +5V chip power supply pin. This makes it possible for the +5V pin to directly supply source current during erasure.
摘要:
A method for making a ULSI MOSFET includes covering core gate stacks with a first protective layer, etching away the first layer such that intended source regions of the substrate are exposed, and implanting dopant into the source regions. A second protective layer is then deposited over the first layer and is etched back to conform to the first layer, covering only the sides of the gate stacks, and exposing intended drain regions of the substrate. Dopant is then implanted into the drain regions. During subsequent manufacturing steps including ILD formation and metallization, mobile ions and other process-induced charges are blocked from entering the floating gates of the gate stacks by the protective layers, thereby preventing unwanted charge gain/loss.
摘要:
A method of erasing a flash electrically-erasable programmable read-only memory (EEPROM) device is provided which includes a plurality of memory cells. An erase pulse is applied to the plurality of memory cells. The plurality of memory cells is overerase verified and an overerase correction pulse is applied to the bitline to which the overerased memory cell is attached. This cycle is repeated until all cells verify as not being overerased. The plurality of memory cells is erase verified and another erase pulse is applied to the memory cells if there are undererased memory cells and the memory cells are again erase verified. This cycle is repeated until all cells verify as not being undererased. After erase verify is completed, the plurality of memory cells is soft program verified and a soft programming pulse is applied to the those memory cells in the plurality of memory cells which have a threshold voltage below a pre-defined minimum value. This cycle is repeated until all of those memory cells in the plurality of memory cells which have a threshold voltage below the pre-defined minimum value are brought above the pre-defined minimum value. The erase method is considered to be finished when there are no memory cells in the plurality of memory cells which have a threshold voltage below the pre-defined minimum value.
摘要:
A flash memory formed by a process wherein at least two parallel stacked gate strips are formed on a silicon substrate such that the stacked gate strips are separated by field oxide islands. Asymmetrical first and second junctions are formed in each of a set of source/drain regions and a chemical etch is applied to form the field oxide islands into oxide spacers that align a dual-function control line to the first and second junctions. The resulting flash memory includes a plurality of stacked gate islands, one or more source/drain regions between at least a subset of the plurality of stacked gate islands, first junctions in each of the source/drain regions, second junctions in each of the source/drain regions and dual function control lines in the source/drain regions.
摘要:
A flash memory cell programming system and method that facilitate efficient and quick operation of a flash memory cell by providing a biasable well (e.g., substrate) is presented. The biasable well flash memory cell enables increases in electrical field strengths in a manner that eases resistance to charge penetration of a dielectric barrier (e.g., oxide) around a charge trapping region (e.g., a floating gate). The present biasable well system and method also create a self convergence point that increase control during programming operations and reduces the chances of excessive correction for over erased memory cells. The biasing can assist hard programming to store information and/or soft programming to correct the effects of over-erasing. The biasing can also reduce stress on a drain voltage pump, reduce leakage current and reduce programming durations. Some implementations also include a biasable control gate component, biasable source component and biasable drain component.
摘要:
A source resistor or a positive voltage is coupled to the source and a negative bias voltage is applied at the substrate or p-well of flash memory cells for enhanced efficiency during programming and/or during an APDE (Automatic Program Disturb after Erase) process for a flash memory device. Furthermore, in a system and method for programming the flash memory device, a flash memory cell of the array of multiple flash memory cells is selected to be programmed. A control gate programming voltage is applied to the control gate of the selected flash memory cell, and a bit line programming voltage is applied to the drain of the selected flash memory cell via the common bit line terminal to which the drain of the selected flash memory cell is connected.
摘要:
A flash memory formed by a process wherein at least two parallel stacked gate strips are formed on a silicon substrate such that the stacked gate strips are separated by field oxide islands. Asymmetrical first and second junctions are formed in each of a set of source/drain regions and a chemical etch is applied to form the field oxide islands into oxide spacers that align a dual-function control line to the first and second junctions. The resulting flash memory includes a plurality of stacked gate islands, one or more source/drain regions between at least a subset of the plurality of stacked gate islands, first junctions in each of the source/drain regions, second junctions in each of the source/drain regions and dual function control lines in the source/drain regions.
摘要:
A flash memory formed by a process wherein at least two parallel stacked gate strips are formed on a silicon substrate such that the stacked gate strips are separated by field oxide islands. Asymmetrical first and second junctions are formed in each of a set of source/drain regions and a chemical etch is applied to form the field oxide islands into oxide spacers that align a dual-function control line to the first and second junctions. The resulting flash memory includes a plurality of stacked gate islands, one or more source/drain regions between at least a subset of the plurality of stacked gate islands, first junctions in each of the source/drain regions, second junctions in each of the source/drain regions and dual function control lines in the source/drain regions.
摘要:
There is provided an improved method for eliminating of cycling-induced electron trapping in the tunneling oxide of flash EEPROM devices. A relatively low positive pulse voltage is applied to a source region of the EEPROM devices during an entire erase cycle. Simultaneously, a negative ramp voltage is applied to a control gate of the EEPROM devices during the entire erase cycle so as to accomplish an averaging tunneling field from the beginning of the erase cycle to the end of the erase cycle.