摘要:
The invention is a process for recovering oxygen from an oxygen-containing gaseous mixture containing one or more components selected from water, carbon dioxide or a volatile hydrocarbon which process utilizes ion transport membranes comprising a multicomponent metallic oxide containing barium. The process utilizes a temperature regime which overcomes problems associated with degradation of barium-containing multicomponent oxides caused by carbon dioxide.
摘要:
This invention relates to a process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture which contains water, carbon dioxide or volatile hydrocarbons. The process utilizes a class of ion transport membranes formed from multicomponent metallic oxides wherein permeance of such membranes had been believed to be permanently degraded by water and the like under conventional process operating temperatures. This invention provides a continuous process for restoring oxygen permeance of such membranes caused by deleterious interaction between the membrane and components such as carbon dioxide, water or hydrocarbons at elevated process temperatures.
摘要:
The invention is a process for recovering oxygen from an oxygen-containing gaseous mixture containing one or more components selected from water, carbon dioxide or a volatile hydrocarbon which process utilizes ion transport membranes comprising a multicomponent metallic oxide containing strontium, calcium or magnesium. The process utilizes a temperature regime which overcomes problems associated with degradation of strontium-, calcium- and magnesium-containing multicomponent oxides caused by carbon dioxide.
摘要:
The present invention is a method for manufacturing inorganic membranes which are capable of separating oxygen from oxygen-containing gaseous mixtures. The membranes comprise a porous composite of a thin layer of a multicomponent metallic oxide which has been deposited onto a porous support wherein the pores of the multicomponent metallic oxide layer are subsequently filled or plugged with a metallic-based species. The inorganic membranes are formed by depositing a porous multicomponent metallic oxide layer onto the porous support to form a porous composite having a network of pores capable of transporting gases. The network of pores are plugged or filled by organometallic vapor infiltration to form an inorganic membrane having essentially no through porosity.
摘要:
The present invention relates to surface catalyzed ion transport membranes which demonstrate superior oxygen flux. The membranes comprise a dense multicomponent metallic oxide layer having a first surface and a second surface wherein the first surface is coated with a catalyst such as a metal or an oxide of a metal selected from Groups II, V, VI, VII, VIII, IX, X, XI, XV and the F Block lanthanides of the Periodic Table of the Elements. One or more porous layers formed from a mixed conducting multicomponent metallic oxide or a material which is not mixed conducting under process operating conditions may be formed contiguous to the second surface of the dense layer. The claimed membranes are capable of separating oxygen from oxygen-containing gaseous mixtures.
摘要:
Tubular solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of tubular membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
摘要:
The present invention relates to surface catalyzed ion transport membranes which demonstrate superior oxygen flux. The membranes comprise a porous mixed conducting multicomponent metallic oxide layer having a first surface onto which a catalyst is deposited and a second surface which is contiguous with a dense mixed conducting multicomponent metallic oxide layer. Suitable catalysts to be deposited onto the porous mixed conducting layer include one or more metals or oxides of metals selected from Groups II, V, VI, VII, VIII, IX, X, XI, XV and the F Block lanthanides of the Periodic Table of the Elements. The claimed membranes are capable of separating oxygen from oxygen-containing gaseous mixtures.
摘要:
An improved method is provided for depositing a thin copper aluminum alloy film on a patterned silicon substrate. A copper base layer conforming to the existing pattern is initially formed on the surface of the substrate, followed by contact with vapors of an aminealane compound, which causes aluminum to be selectively deposited on the copper base layer portion of the substrate. Preferably, copper is applied to a diffusion barrier surface such as tungsten using chemical vapor deposition from a complex of copper (I) perfluoroalkyl-.beta.-diketonate and an olefin or silylolefin. The entire process of developing an alloy film can be carried out without exceeding 200.degree. C.
摘要:
Novel volatile barium complexes are disclosed which are very stable and evaporate cleanly at elevated temperatures. Such complexes are highly suited for use as a barium source in OMCVD processes.
摘要:
An extremely hard, fine grained tungsten carbide produced by thermochemical deposition is described. The tungsten carbide consists primarily of substantially pure tungsten carbide wherein the tungsten carbide consists of WC.sub.1-x, where x is 0 to about 0.4. The disclosed tungsten carbide is free of columnar grains and consists essentially of extremely fine, equiaxial crystals. Also disclosed is a method of producing the disclosed material.