摘要:
A semiconductor device is fabricated to have improved bitline contact formation. Polysilicon is deposited between gate contacts that connect to transistors of DRAM memory cells. The polysilicon covers the gate contacts and continues to cover the gate contacts during subsequent processing steps. A bitline of, e.g., tungsten, is deposited so that it contacts at least a portion of the polysilicon, thereby providing electrical contact with the DRAM transistors.
摘要:
A method of forming borderless contacts and a borderless contact structure for semiconductor devices. A preferred embodiment comprises using a second etch selectivity material disposed over a first etch selectivity material to preserve the first etch selectivity material during the etch processes for the various material layers of the semiconductor device while forming the borderless contacts.
摘要:
An etch rate of a nitride liner layer is improved relative to an etch rate of a nitride cap layer. The nitride liner layer is located at an exposed portion of a substrate adjacent to a stacked structure also located atop the substrate. The nitride cap layer is located atop the stacked structure. An oxide spacer is formed along sidewalls of the stacked structure. The nitride liner layer is patterned and etched to form at least one opening therein to the substrate while the nitride cap layer remains substantially intact.
摘要:
A method of forming borderless contacts and a borderless contact structure for semiconductor devices. A preferred embodiment comprises using a second etch selectivity material disposed over a first etch selectivity material to preserve the first etch selectivity material during the etch processes for the various material layers of the semiconductor device while forming the borderless contacts.
摘要:
Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
摘要:
Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
摘要:
Embodiments herein present a method for forming a poly filled substrate contact on a SOI structure. The method forms an insulator on a substrate and forms a substrate contact hole within the insulator. The insulator surface level is higher than final structure. Next, a poly overfill is performed, comprising filling the substrate contact hole with polysilicon and covering the insulator with the polysilicon. Specifically, the thickness of the polysilicon is greater than the size of the substrate contact hole. Following this, the polysilicon is etched, wherein a portion of the polysilicon is removed, and wherein the substrate contact hole is left partially filled with the polysilicon. Further, the etching of the polysilicon forms a concave recess within a top portion of the polysilicon. The etching of said polysilicon does not contact the substrate. The excess of insulator is polished off to the desired level.
摘要:
Selectivity of SiO.sub.2 to Si.sub.3 N.sub.4 is increased with the additional of silicon rich nitride conformal layer to manufacturing of semiconductor chip. Silicon rich nitride conformal layer may be used in place of or in addition to standard nitride conformal layers in manufacture.
摘要翻译:SiO 2与Si 3 N 4的选择性随着富硅氮化物附加层的附加而增加,从而制造半导体芯片。 富含氮的氮化物保形层可以代替制造中的标准氮化物保形层来代替标准氮化物保形层。
摘要:
A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
摘要:
A method is disclosed for improving etch uniformity in deep silicon etching of a monocrystalline silicon wafer. Such method includes forming a pad dielectric layer on a wafer including monocrystalline silicon, forming a silicon layer over the pad dielectric layer, and then applying a clamp to an edge of the wafer. The silicon layer is then removed except in areas protected by the clamp. Thereafter, a hardmask layer is applied and patterned on the wafer; and the wafer is then directionally etched with the patterned hardmask to etch trenches in the monocrystalline silicon. In such manner, a source of silicon (in the silicon layer) is provided at the wafer edge, such that the silicon loading is improved. In addition, the silicon layer at the wafer edge forms a blocking layer which prevents formation of black silicon.