摘要:
Provided is a semiconductor device manufacturing method wherein the following steps are performed; a step of forming at least a part of an element on a base body layer, a step of forming a peeling layer, a step of forming a planarizing film; a step of forming a die by separating the base body layer at a separating region; a step of bonding the die to a substrate by bonding the die on the planarizing film; and a step of peeling and removing a part of the base body layer along the peeling layer. Prior to the step of forming the die, a step of forming a groove opened on the surface of the planarizing film such that at least a part of the separating region is included on the bottom surface of the groove, and forming the die such that the die has a polygonal outer shape wherein all the internal angles are obtuse by forming the groove is performed.
摘要:
Disclosed is a glass substrate (20) that is capable of constituting a semiconductor device (10) when a monocrystalline silicon thin film (90) is provided on the surface of the substrate by transfer. The surface of the glass substrate (20) has a receiving surface (22) onto which the monocrystalline silicon thin film (90) can be provided. The height of the ripples on the receiving surface (22) having a period of 200 to 500 microns is no more than 0.40 nm.
摘要:
The present invention is intended to provide a glass substrate (20), made of an insulating material, which can constitute a semiconductor apparatus (10) by transferring a single crystal silicon film (50) or a substrate including a semiconductor device onto a surface (24) of the insulating substrate, a transferred surface (26) being part of the surface (24), the single crystal silicon film (50) capable of being provided on the transferred surface (26), and the transferred surface (26) having an arithmetic mean roughness of not more than 0.4 nm.
摘要:
A method of the present invention includes a first planarization film formation step of forming, in at least part of a flat portion of the second regions, a first planarization film so as to have a uniform thickness; a second planarization film formation step of forming a second planarization film between the first planarization films to be coplanar with a surface of the first planarization film; a peeling layer formation step of forming a peeling layer by ion implantation of a peeling material into the base layer via the first planarization film or the second planarization film; and a separation step of separating part of the base layer along the peeling layer.
摘要:
An element portion forming step includes an insulating film forming step of forming an insulating film on a surface of a base layer, a conductive layer forming step of uniformly forming a conductive layer on a surface of the insulating film, and an electrode forming step of patterning the conductive layer to form an electrode. A delamination layer forming step of ion implanting a delamination material into the base layer to form a delamination layer is performed before the electrode forming step.
摘要:
The present invention provides a production method of a semiconductor device, a production method of a display device, a semiconductor device, a production method of a semiconductor element, and a semiconductor element, each capable of providing a lower-resistance semiconductor element which is more finely prepared through more simple steps. The production method of the semiconductor device of the present invention is a production method of a semiconductor device including a semiconductor element on a substrate, wherein the production method includes a metal silicide-forming step of: transferring the semiconductor element onto the substrate, the semiconductor element having a multilayer structure of a silicon layer and a metal layer, and by heating, forming metal silicide from silicon for a metal layer-side part of the silicon layer and metal for a silicon layer-side part of the metal layer.
摘要:
The present invention is intended to provide a glass substrate (20), made of an insulating material, which can constitute a semiconductor apparatus (10) by transferring a single crystal silicon film (50) or a substrate including a semiconductor device onto a surface (24) of the insulating substrate, a transferred surface (26) being part of the surface (24), the single crystal silicon film (50) capable of being provided on the transferred surface (26), and the transferred surface (26) having an arithmetic mean roughness of not more than 0.4 nm.
摘要:
A device portion forming step includes an assisting layer forming step of forming a planarization assisting layer, which covers a plurality of conductive films, over a first planarizing layer before forming a second planarizing layer. In the assisting layer forming step, the planarization assisting layer is formed so that a height of the planarization assisting layer from a surface of the first planarizing layer located on a side opposite to the substrate layer becomes equal between at least a part of a region where the conductive films are formed, and at least a part of a region where no conductive film is formed.
摘要:
A method for manufacturing a semiconductor device includes: an element portion formation step of forming an element portion on a base layer; a delaminating layer formation step of forming a delaminating layer in the base layer; a bonding step of bonding the base layer having the element portion to a substrate; and a separation step of separating and removing a portion of the base layer in the depth direction along the delaminating layer by heating the base layer bonded to the substrate. The method further includes, after the separation step, an ion implantation step of ion-implanting a p-type impurity element in the base layer for adjusting the impurity concentration of a p-type region of the element.
摘要:
The present invention provides a production method of a semiconductor device, capable of improving surface flatness of a semiconductor chip formed on a semiconductor substrate and thereby suppressing a variation in electrical characteristics of the semiconductor chip transferred onto a substrate with an insulating surface, and further capable of improving production yield. The present invention provides a production method of a semiconductor device including a semiconductor chip on a substrate with an insulating surface, the semiconductor chip having a conductive pattern film, the production method including the following successive steps of: forming a first insulating film on a semiconductor substrate and on a conductive pattern film formed on the semiconductor substrate and reducing a thickness of the first insulating film in a region where the conductive pattern film is arranged by patterning; forming a second insulating film and polishing the second insulating film, thereby forming a flattening film; implanting a substance for cleavage into the semiconductor substrate through the flattening film, thereby forming a cleavage layer; transferring the semiconductor chip onto a substrate with an insulating surface so that the chip surface on the side opposite to the semiconductor substrate is attached thereto; and separating the semiconductor substrate from the cleavage layer. The present invention is also a semiconductor device produced by the production method.