摘要:
A layer of silicon nitride having a thickness from 0.5 nanometers to 2.4 nanometers is deposited on a substrate. A plasma nitridation process is carried out on the layer. These steps are repeated for a plurality of additional layers of silicon nitride, until a predetermined thickness is attained. Such steps can be used to provide a multilayer silicon nitride dielectric formed on a substrate having an upper surface of dielectric material with Cu and other conductors embedded within, and a plurality of steps. The multilayer silicon nitride dielectric has a plurality of individual layers each having a thickness from 0.5 nanometers to 2.4 nanometers, and the multilayer silicon nitride dielectric conformally covers the steps of the substrate with a conformality of at least seventy percent. A multilayer silicon nitride dielectric, and a multilevel back end of line interconnect wiring structure using same, are also provided.
摘要:
The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
摘要:
The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
摘要:
A dielectric capping layer having a dielectric constant of less than 4.2 is provided that exhibits a higher mechanical and electrical stability to UV and/or E-Beam radiation as compared to conventional dielectric capping layers. Also, the dielectric capping layer maintains a consistent compressive stress upon post-deposition treatments. The dielectric capping layer includes a tri-layered dielectric material in which at least one of the layers has good oxidation resistance, is resistance to conductive metal diffusion, and exhibits high mechanical stability under at least UV curing. The low k dielectric capping layer also includes nitrogen content layers that contain electron donors and double bond electrons. The low k dielectric capping layer also exhibits a high compressive stress and high modulus and is stable under post-deposition curing treatments, which leads to less film and device cracking and improved device reliability.
摘要:
A multiphase ultra low k dielectric process incorporating an organo-silicon precursor including an organic porogen, high frequency radio frequency power just above plasma initiation in a PECVD chamber and energy post treatment. A porous SiCOH dielectric material having a k less than 2.7 and a modulus of elasticity greater than 7 GPa. A graded carbon adhesion layer of SiO2 and porous SiCOH.
摘要:
An interconnect structure is provided that has improved electromigration resistance as well as methods of forming such an interconnect structure. The interconnect structure includes an interconnect dielectric material having a dielectric constant of about 4.0 or less. The interconnect dielectric material has at least one opening therein that is filled with a Cu-containing material. The Cu-containing material within the at least one opening has an exposed upper surface that is co-planar with an upper surface of the interconnect dielectric material. The interconnect structure further includes a composite M-MOx cap located at least on the upper surface of the Cu-containing material within the at least one opening. The composite M-MOx cap includes an upper region that is composed of the metal having a higher affinity for oxygen than copper and copper oxide and a lower region that is composed of a non-stoichiometric oxide of said metal. The interconnect structure further includes a dielectric cap located on at least an upper surface of the composite M-MOx cap.
摘要:
An interconnect structure is provided that has improved electromigration resistance as well as methods of forming such an interconnect structure. The interconnect structure includes a composite M-MOx cap located at least on the upper surface of the Cu-containing material within the at least one opening. The composite M-MOx cap includes an upper region that is composed of the metal having a higher affinity for oxygen than copper and copper oxide and a lower region that is composed of a non-stoichiometric oxide of said metal.
摘要:
A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
摘要:
A carbon-rich carbon boron nitride dielectric film having a dielectric constant of equal to, or less than 3.6 is provided that can be used as a component in various electronic devices. The carbon-rich carbon boron nitride dielectric film has a formula of CxByNz wherein x is 35 atomic percent or greater, y is from 6 atomic percent to 32 atomic percent and z is from 8 atomic percent to 33 atomic percent.
摘要翻译:提供具有等于或小于3.6的介电常数的富碳碳氮化硼介电膜,其可用作各种电子器件中的组分。 富碳碳氮化硼电介质膜具有C x B y N z的化学式,其中x为35原子%以上,y为6原子%〜32原子%,z为8原子%〜33原子%。