摘要:
A structure that includes a substrate, typically a semiconductor chip such as a VCSEL or photodetector chip, and a guide for aligning a signal conveying device, typically an optical fiber, to a transducer such as an optoelectronic device on the semiconductor chip. The guide is formed, in a preferred embodiment, by lithographically exposing and developing a thick layer of photoresist. The structure is assembled by placing and securing the signal conveying device into a cavity-like region of the guide.
摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅叠层结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了具有大约8×10 10电荷/ cm 2或更小的电荷泵浦的界面状态密度,约250cm 2 / s以上的峰值迁移率和基本上没有 约6.0×10 12反相电荷/ cm 2以上的迁移率降解。
摘要:
A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device.
摘要:
A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device.
摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高迁移率和低界面电荷的栅叠层结构,以及包括其的半导体器件即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了一种栅极叠层结构,其具有约8×10 10电荷/ cm 2或更小的峰值迁移率,约250cm 2 / s或更大的峰迁移率的通过电荷泵浦测量的界面状态密度,以及 在大约6.0×10 12反转电荷/ cm 2或更大时基本上没有迁移率降解。
摘要:
A compound metal comprising HfSiN which is a n-type metal having a workfunction of about 4.0 to about 4.5, preferably about 4.3, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000° C.), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 Å classical), which cannot be achieved using TaSiN.
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要:
A method for passivating the surface of a compound semiconductor comprises annealing the substrate to form an anion rich surface layer containing cationic and anionic oxides and stripping the oxides to leave only a very thin anionic layer on the surface. The substrate is then subjected to an H.sub.2 plasma cleaning to remove chemisorbed oxygen. An N.sub.2 plasma cleaning is then performed to form an anionic nitride layer that is free of any cationic nitride. A layer of insulating material, such as, a native or other oxide, or a nitride, is deposited. The resulting structure has a very low interface state density such that the Fermi level may be swept through the entire band gap.