摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
A method to form a semiconductor structure with an active region and a compatible dielectric layer is described. In one embodiment, a semiconductor structure has a dielectric layer comprised of an oxide of a first semiconductor material, wherein a second (and compositionally different) semiconductor material is formed between the dielectric layer and the first semiconductor material. In another embodiment, a portion of the second semiconductor material is replaced with a third semiconductor material in order to impart uniaxial strain to the lattice structure of the second semiconductor material.
摘要:
A method to form a semiconductor structure with an active region and a compatible dielectric layer is described. In one embodiment, a semiconductor structure has a dielectric layer comprised of an oxide of a first semiconductor material, wherein a second (and compositionally different) semiconductor material is formed between the dielectric layer and the first semiconductor material. In another embodiment, a portion of the second semiconductor material is replaced with a third semiconductor material in order to impart uniaxial strain to the lattice structure of the second semiconductor material.
摘要:
A method to form a semiconductor structure with an active region and a compatible dielectric layer is described. In one embodiment, a semiconductor structure has a dielectric layer comprised of an oxide of a first semiconductor material, wherein a second (and compositionally different) semiconductor material is formed between the dielectric layer and the first semiconductor material. In another embodiment, a portion of the second semiconductor material is replaced with a third semiconductor material in order to impart uniaxial strain to the lattice structure of the second semiconductor material.
摘要:
A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
摘要:
Structures and methods of fabrication thereof related to an improved semiconductor on insulator (SOI) transistor formed on an SOI substrate. The improved SOI transistor includes a substantially undoped channel extending between the source and the drain, an optional threshold voltage set region positioned below the substantially undoped channel, and a screening region positioned below the threshold voltage set region. The threshold voltage of the improved SOI transistor can be adjusted without halo implants or threshold voltage implants into the channel, using the position and/or dopant concentration of the screening region and/or the threshold voltage set region.
摘要:
A planar transistor with improved performance has a source and a drain on a semiconductor substrate that includes a substantially undoped channel extending between the source and the drain. A gate is positioned over the substantially undoped channel on the substrate. Implanted source/drain extensions contact the source and the drain, with the implanted source/drain extensions having a dopant concentration of less than about 1×1019 atoms/cm3′, or alternatively, less than one-quarter the dopant concentration of the source and the drain.
摘要:
An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5×1018 dopant atoms per cm3. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.