摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅叠层结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了具有大约8×10 10电荷/ cm 2或更小的电荷泵浦的界面状态密度,约250cm 2 / s以上的峰值迁移率和基本上没有 约6.0×10 12反相电荷/ cm 2以上的迁移率降解。
摘要:
The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高迁移率和低界面电荷的栅叠层结构,以及包括其的半导体器件即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 本发明中使用的高温退火提供了一种栅极叠层结构,其具有约8×10 10电荷/ cm 2或更小的峰值迁移率,约250cm 2 / s或更大的峰迁移率的通过电荷泵浦测量的界面状态密度,以及 在大约6.0×10 12反转电荷/ cm 2或更大时基本上没有迁移率降解。
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要:
A semiconductor structure, particularly a gate stack, useful in field effect transistors (FETs) in which the threshold voltage thereof is controlled by introducing a fixed spatial distribution of electric charge density to the gate dielectric material and a method of forming the same are provided. nFETs and/or pFETs structures are disclosed. In accordance with the present invention, the fixed spatial distribution of electric charge density of the gate stack or FET denotes an electrical charge density that occupies space which remains substantially constant as a function of time under device operation conditions and is non-zero at least at one location within the dielectric material or at its interface with the channel, gate electrode, spacer, or any other structural elements of the device.
摘要:
A method for producing thin, below 6 nm of equivalent oxide thickness, germanium oxynitride layer on Ge-based materials for use as gate dielectric is disclosed. The method involves a two step process. First, nitrogen is incorporated in a surface layer of the Ge-based material. Second, the nitrogen incorporation is followed by an oxidation step. The method yields excellent thickness control of high quality gate dielectrics for Ge-based field effect devices, such as MOS transistors. Structures of devices having the thin germanium oxynitride gate dielectric and processors made with such devices are disclosed, as well.
摘要:
A method for forming an ultra thin gate dielectric for an integrated circuit device is disclosed. In an exemplary embodiment of the invention, the method includes forming an initial nitride layer upon a substrate by rapidly heating the substrate in the presence of an ammonia (NH3) gas, and then re-oxidizing the initial nitride layer by rapidly heating the initial nitride layer in the presence of a nitric oxide (NO) gas, thereby forming an oxynitride layer. The oxynitride layer has a nitrogen concentration therein of at about 1.0×1015 atoms/cm2 to about 6.0×1015 atoms/cm2, and has a thickness which may be controlled within a sub 10 Å range.
摘要翻译:公开了一种用于形成用于集成电路器件的超薄栅极电介质的方法。 在本发明的一个示例性实施例中,该方法包括通过在氨(NH 3)气体存在下快速加热衬底,然后通过快速加热初始氮化物来再次氧化初始氮化物层,在衬底上形成初始氮化物层 在一氧化氮(NO)气体的存在下形成氮氧化物层。 氧氮化物层的氮浓度为约1.0×10 15原子/ cm 2至约6.0×10 15原子/ cm 2,并且其厚度可控制在亚范围内 。
摘要:
A method for integrating a high-k material into CMOS processing schemes is provided. The method includes forming an interfacial oxide, oxynitride and/or nitride layer on a device region of a semiconductor substrate, said interfacial layer having a thickness of less than 10 Å; and (b) forming a high-k dielectric material on said interfacial oxide, oxynitride and/or, nitride layer, said high-k dielectric having a dielectric constant, k, of greater than 8.
摘要:
A method for forming a gate dielectric for an integrated circuit device. In an exemplary embodiment of the invention, the method includes forming an initial oxynitride layer upon a substrate material, the oxynitride layer having an initial physical thickness. The initial oxynitride layer is then subjected to a plasma nitridation, the plasma nitridation resulting in final oxynitride layer having a final physical thickness.
摘要:
A method for forming a gate dielectric for an integrated circuit device. In an exemplary embodiment of the invention, the method includes forming an initial oxynitride layer upon a substrate material, the oxynitride layer having an initial physical thickness. The initial oxynitride layer is then subjected to a plasma nitridation, the plasma nitridation resulting in final oxynitride layer having a final physical thickness.
摘要:
Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.