摘要:
A microwave plasma processing system 10 includes: a processing chamber 100 in which a desired process is applied to a target object using a plasma; a susceptor 106 (stage) in the processing chamber 100 to support the target object; a high-frequency power supply 112 supplying high-frequency electric power to the susceptor 106; a capacitor 108a provided to the susceptor 106; and a measurement device 20 measuring voltages at the pair of plates of the capacitor 108a when high-frequency electric power is supplied from the high-frequency power supply 112 to the susceptor 106.
摘要:
A microwave plasma processing system 10 includes: a processing chamber 100 in which a desired process is applied to a target object using a plasma; a susceptor 106 (stage) in the processing chamber 100 to support the target object; a high-frequency power supply 112 supplying high-frequency electric power to the susceptor 106; a capacitor 108a provided to the susceptor 106; and a measurement device 20 measuring voltages at the pair of plates of the capacitor 108a when high-frequency electric power is supplied from the high-frequency power supply 112 to the susceptor 106.
摘要:
A microwave plasma processing method and, in which a linear plasma is produced by means of a microwave, and an object to be processed is subjected to processing under atmospheric pressure or under a pressure near atmospheric pressure when the object is moved, while a surface of the object is maintained at a horizontal position with respect to the linear plasma. A plasma head has an H-plane slot antenna, and slots are arranged alternately on both sides of a centerline of a waveguide at a pitch of λg/2 (λg: wavelength of the microwave with the waveguide). A uniforming line having a distance of n·λg/2 from the slots to an emission end of the plasma head is provided (n: an integral number).
摘要:
A distributor (30) includes a square waveguide (31) to be connected to a microwave oscillator (20) and a square waveguide (41) having a plurality of openings (43) formed in a narrow wall (41B). The square waveguide (31) is hollow. A wave delaying member (53) having a relative dielectric constant ∈r is arranged in the square waveguide (41). Narrow walls (31A, 41A) of the two square waveguides (31, 41) are brought into contact with each other, and a communication hole (32) through which the two waveguides (31, 41) communicate with each other is formed in the narrow walls (31A, 41A). The widths of the two waveguides (31, 41) do not become narrow at their connecting portion even if the width of the communication hole (32) is decreased. Thus, a band of a frequency that can pass through the connecting portion is suppressed from becoming narrow. Consequently, reflection loss that occurs when the frequency of electromagnetic waves to be input to the distributor (30) changes can be decreased.
摘要:
A distributor (30) includes a square waveguide (31) to be connected to a microwave oscillator (20) and a square waveguide (41) having a plurality of openings (43) formed in a narrow wall (41B). The square waveguide (31) is hollow. A wave delaying member (53) having a relative dielectric constant εr is arranged in the square waveguide (41). Narrow walls (31A, 41A) of the two square waveguides (31, 41) are brought into contact with each other, and a communication hole (32) through which the two waveguides (31, 41) communicate with each other is formed in the narrow walls (31A, 41A). The widths of the two waveguides (31, 41) do not become narrow at their connecting portion even if the width of the communication hole (32) is decreased. Thus, a band of a frequency that can pass through the connecting portion is suppressed from becoming narrow. Consequently, reflection loss that occurs when the frequency of electromagnetic waves to be input to the distributor (30) changes can be decreased.
摘要:
In a semiconductor manufacturing method that manufactures a coplanar type thin film transistor, a microcrystalline film 10 that will become a channel region is formed on a glass substrate S, a sacrificial silicon oxide 20 film is formed on the microcrystalline film 10, and, in a state in which a surface boundary of the microcrystalline film 10 is protected by the sacrificial silicon oxide film 20, a doped silicon film 30 is built up that will become a source region and a drain region. A photoresist R film is applied on the doped silicon film 30 and planarized. With the sacrificial silicon oxide film 20 in an uncovered state, etching is performed until the microcrystalline film 10 and the doped silicon film 30 reside in approximately the same plane.
摘要:
A microwave plasma processing apparatus includes: a processing container wherein a gas is excited by microwaves and a substrate is plasma-processed; a microwave source which outputs microwaves; a transmission line through which the microwaves output from the microwave source are transmitted; a plurality of dielectric plates which are arranged on an inner surface of the processing container and emit the microwaves into the processing container; a plurality of first coaxial waveguides which are adjacent to the dielectric plates and through which the microwaves are transmitted to the dielectric plates; and a coaxial waveguide distributor which distributes and transmits the microwaves transmitted through the transmission line to the first coaxial waveguides. The coaxial waveguide distributor includes a second coaxial waveguide which has an input portion and 2 types of branched structures which are connected to the first coaxial waveguides and have different configurations.
摘要:
A plasma etching device which has an auxiliary electrode enabling realization of a uniform plasma density of generated plasma on the surface of a base and which enables uniform etching with respect to the base without depending upon pressure and without rotating a magnetic field applying means. The plasma etching device has magnetic field applying means which has two parallel plate electrodes I and II and RF power applying means, with the base set on the electrode I, and which is horizontal and unidirectional with respect to the surface of the base where plasma etching is carried out. In this plasma etching device, an auxiliary electrode is provided at least on the upstream side of the base in a flow of electron current generated by the magnetic field applying means. The auxiliary electrode includes a local electrode arranged on the side facing the electrode II and means for adjusting impedance provided at a part of the local electrode to be electrically connected with the electrode I.
摘要:
A plasma processing apparatus capable of reducing the use amount of a dielectric member is provided. The plasma processing apparatus 1 includes a metal processing chamber 4 configured to accommodate therein a substrate G to be plasma-processed; an electromagnetic wave source 34 that supplies an electromagnetic wave necessary to excite plasma in the processing chamber 4; one or more dielectric members 25 provided on a bottom surface of a cover 3 of the processing chamber 4 and configured to transmit the electromagnetic wave supplied from the electromagnetic wave source 34 into the inside of the processing chamber 4, a portion of each dielectric member 25 being exposed to the inside of the processing chamber 4; and a surface wave propagating section 51 installed adjacent to the dielectric member 25 and configured to propagate the electromagnetic wave along a metal surface exposed to the inside of the processing chamber 4.
摘要:
There is provided a plasma processing apparatus in which a microwave is propagated into a dielectric body disposed at a top surface of a process chamber through a plurality of slots formed in a bottom face of a rectangular waveguide to excite a predetermined gas supplied into the process chamber into plasma by electric field energy of an electromagnetic field formed on a surface of the dielectric body, to thereby generate plasma with which a substrate is processed, wherein a top face member of the rectangular waveguide is formed of a conductive, nonmagnetic material and is disposed so as to be movable up and down relative to the bottom face of the rectangular waveguide. To change a wavelength in the rectangular waveguide, the top face member of the rectangular waveguide is moved up and down relative to the bottom face of the rectangular waveguide according to conditions of the plasma processing performed in the process chamber, such as gas species, pressure, and a power of the microwave of a microwave supplier.