摘要:
A voltage controlled oscillator (VCO) has a plurality of series-connected inverters. Within each inverter a first transistor has a first current electrode coupled to a first power supply voltage terminal, a second current electrode, a first control electrode coupled to an output terminal of another inverter of the plurality of series-connected inverters, and a second control electrode for receiving a first bias signal. A second transistor has a first current electrode coupled to the second current electrode of the first transistor, a second current electrode coupled to a second power supply voltage terminal, and a first control electrode coupled to the first control electrode of the first transistor. The second control electrode of the first transistor of each inverter receives a same or separate analog control signal to adjust the threshold voltage of the first transistors thereof to affect frequency and phase of the VCO's signal.
摘要:
A device and method for phase detection are disclosed. The device includes a phase differential module that provides a phase difference signal based on the phase difference between a data signal and a reference signal. The phase difference signal is provided to a first gate of a multi-gate fin-type field effect transistor (multi-gate FinFET) of the device. A second gate of the multi-gate FinFET transistor receives a bias signal that provides a phase detection threshold. A phase adjustment signal is provided at one or both of the FinFET current electrodes based on the phase difference signal and the bias signal.
摘要:
A device and method for temperature compensation of an electronic device are disclosed. The device includes a temperature bias controller with a temperature sensor. A bias signal based upon a signal from the temperature sensor is provided to a first gate of a multiple fin gate field effect transistor (multigate FinFET) transistor of a functional block. A second gate of the multigate FinFET transistor receives a control signal to control its operation within the functional block. In this configuration the first gate of the multigate FinFET transistor can be used for temperature compensation while the second gate is used for functional operation of the transistor. Specific embodiments of the present disclosure will be better understood with respect to the figures.
摘要:
An analog to digital converter including a plurality of multiple independent gate field effect transistors (MIGFET) that provide a plurality of digital output signals, is provided. Each MIGFET of the plurality of MIGFETs may have first gate for receiving an analog signal, a second gate for being biased, and a current electrode for providing a digital output signal from among the plurality of the digital output signals. Each MIGFET of the plurality of MIGFETs may have a combination of body width, channel length that is unique among the plurality of MIGFETs to result in a threshold voltage that is unique among the plurality of MIGFETs. A digital to analog converter including a plurality of MIGFETs is also provided.
摘要:
A method for forming a phase change memory cell (PCM) includes forming a heater for the phase change memory and forming a phase change structure electrically coupled to the heater. The forming a heater includes siliciding a material including silicon to form a silicide structure, wherein the heater includes at least a portion of the silicide structure. The phase change structure exhibits a first resistive value when in a first phase state and exhibits a second resistive value when in a second phase state. The silicide structure produces heat when current flows through the silicide structure for changing the phase state of the phase change structure.
摘要:
A method of forming an electronic device can include forming a metallic layer by an electrochemical process over a side of a substrate that includes a semiconductor material. The method can also include introducing a separation-enhancing species into the substrate at a distance from the side, and separating a semiconductor layer and the metallic layer from the substrate, wherein the semiconductor layer is a portion of the substrate. In a particular embodiment, the separation-enhancing species can be incorporated into a metallic layer and moved into the substrate, and in particular embodiment, the separation-enhancing species can be implanted into the substrate. In still another embodiment, both the techniques can be used. In a further embodiment, a dual-sided process can be performed.
摘要:
A process for forming an electronic device can include forming a semiconductor fin of a first height for a fin-type structure and removing a portion of the semiconductor fin such that the semiconductor fin is shortened to a second height. In accordance with specific embodiment a second semiconductor fin can be formed, each of the first and the second semiconductor fins having a different height representing a channel width. In accordance with another specific embodiment a second and a third semiconductor fin can be formed, each of the first, the second and the third semiconductor fins having a different height representing a channel width.
摘要:
An electronic device can include a gated diode, wherein the gated diode includes a junction diode structure including a junction. A first conductive member spaced apart from and adjacent to the junction can be connected to a first signal line. A second conductive member, spaced apart from and adjacent to the junction, can be both electrically connected to a second signal line and electrically insulated from the first conductive member. The junction diode structure can include a p-n or a p-i-n junction. A process for forming the electronic device is also described.
摘要:
A rail clamp circuit (100) includes first and second power supply voltage rails, a multiple independent gate field effect transistor (MIGFET) (128), and an ESD event detector circuit (138). The MIGFET (128) has a source/drain path coupled between the first (112) and second (114) power supply voltage rails, and first and second gates. The ESD event detector circuit (138) is coupled between the first (112) and second (114) power supply voltage rails, and has first and second output terminals respectively coupled to the first and second gates of the MIGFET. In response to an electrostatic discharge (ESD) event between the first (112) and second (114) power supply voltage rails, the ESD event detector circuit (138) provides a voltage to the second gate to lower an absolute threshold voltage of the MIGFET (128) while providing a voltage to the first gate above the absolute threshold voltage so lowered, thereby making the MIGFET (128) conductive with relatively high conductivity.
摘要:
A method for making a semiconductor device includes patterning a semiconductor layer, overlying an insulator layer, to create a first active region and a second active region, wherein the first active region is of a different height from the second active region, and wherein at least a portion of the first active region has a first conductivity type and at least a portion of the second active region has a second conductivity type different from the first conductivity type in at least a channel region of the semiconductor device. The method further includes forming a gate structure over at least a portion of the first active region and the second active region. The method further includes removing a portion of the second active region on one side of the semiconductor device.