摘要:
In an electron tube 1, a space S between a periphery part 15b of a semiconductor device 15 and a stem 11 is filled with an insulating resin 20. The insulating resin 20 functions as a reinforcing member while the electron tube 1 is assembled under high-temperature condition, thereby preventing a bump 16 from coming off a bump connection portion 19. Since the space S is only partly closed by the resin 20, the space between the semiconductor device 15 and the stem 11 is ensured a ventilability. That is, no air reservoir is formed between an electron incidence part 15a at the center of the semiconductor device 15 and the surface C of the stem 11, whereby air expanding at high temperature does not damage the electron incidence part 15a of the back-illuminated semiconductor device 15.
摘要:
An electron tube 10 mainly includes a sleeve 12, an input plate 14 having a photocathode surface 18, a stem 16 and a CCD 20. A vacuum is provided in an interior of the electron tube 10. The CCD 20 is fixed onto the stem such that a rear surface B faces the photocathode surface 18. In the CCD 20, on a single conductive type semiconductor substrate 64, a buried layer 66, a barrier region 68, a SiO2 layer 70, a storage electrode layer 72, a transmission electrode layer 74, and a barrier electrode layer 76 are formed at their predetermined positions. A PSG film 78 is formed at an entire front surface A over these layers to flatten the surface of the CCD 20. Further, SiN film 106 mainly composed of SiN is formed above the PSG film over the entire front surface A.
摘要:
When light is incident on the photoelectric surface of this electron tube, photoelectrons are emitted. These photoelectrons are accelerated and incident on an electron beam irradiation diode. A reverse voltage of about 100 V is applied to the electron beam irradiation diode to form a depletion region almost throughout an anode layer and near the p-n junction interface of a silicon substrate. The incident accelerated electrons release a kinetic energy in a heavily doped p-type layer having an electron incidence surface and the depleted anode layer to form electron-hole pairs. In this case, since the heavily doped p-type layer having the electron incidence surface is very thin, the energy is hardly released in this layer, and almost all energy is released in the depletion region. Signal charges extracted from the electron-hole pairs formed upon releasing the energy are output as a signal from two electrodes.
摘要:
In a photomultiplier of the present invention, a semiconductor device arranged in an envelope to oppose a photocathode is constituted by a semiconductor substrate of a first conductivity type, a carrier multiplication layer of a second conductivity type different from the first conductivity type, which is formed on the semiconductor substrate by opitaxial growth, a breakdown voltage control layer of the second conductivity type, which is formed on the carrier multiplication layer and has a dopant concentration higher than that of the carrier multiplication layer, a first insulating layer formed on the breakdown voltage control layer and said carrier multiplication layer while partially exposing the surface of the breakdown voltage control layer as a receptor for photoelectrons and consisting of a nitride, and an ohmic electrode layer formed on a peripheral surface portion of the receptor of the breakdown voltage control layer. When the dopant concentration distribution in the carrier multiplication layer is uniformly controlled on the basis of epitaxial growth, the uniformity of an avalanche multiplication gain for photoelectrons incident at different positions on the receptor of the semiconductor device is improved, thereby largely increasing the energy resolving power.
摘要:
A solid-state imaging device 1 according to one embodiment of the present invention is a charge multiplying solid-state imaging device, and includes an imaging area 10 that generates a charge according to the amount of incident light, an output register unit 20 that receives the charge from the imaging area 10, and a multiplication register unit 28 that multiplies the charge from the output register 20, and performs feed-forward control of the multiplication factor of the multiplication register unit 28 according to the charge amount from the imaging area 10.
摘要:
A solid state imaging device 1 is provided with a photoelectric conversion portion 2 having a plurality of photosensitive regions 7, and a potential gradient forming portion 3 having an electroconductive member 8 arranged opposite to the photosensitive regions 7. A planar shape of each photosensitive region 7 is a substantially rectangular shape. The photosensitive regions 7 are juxtaposed in a first direction intersecting with the long sides. The potential gradient forming portion 3 forms a potential gradient becoming higher along a second direction from one of the short sides to the other of the short sides of the photosensitive regions 7. The electroconductive member 8 includes a first region 8a extending in the second direction and having a first electric resistivity, and a second region 8b extending in the second direction and having a second electric resistivity smaller than the first electric resistivity.
摘要:
A solid-state image pickup element is provided with a semiconductor substrate having a photosensitive region, a plurality of first electrode pads arrayed on a principal face of the semiconductor substrate, a plurality of second electrode pads arrayed in a direction along a direction in which the plurality of first electrode pads are arrayed, on the principal face of the semiconductor substrate, and a plurality of interconnections connecting the plurality of first electrode pads and the plurality of second electrode pads in one-to-one correspondence. The plurality of interconnections connect the first and second electrode pads so that each interconnection connects the first electrode pad and the second electrode pad in a positional relation of line symmetry with respect to a center line perpendicular to the array directions of the plurality of first and second electrode pads.
摘要:
A solid-state imaging device 1 is provided with a plurality of photoelectric converting portions 3 and first and second shift registers 9, 13. Each photoelectric converting portion 3 has a photosensitive region 15 which generates a charge according to incidence of light and which has a planar shape of a nearly rectangular shape composed of two long sides and two short sides, and a potential gradient forming region 17 which forms a potential gradient increasing along a predetermined direction parallel to the long sides forming the planar shape of the photosensitive region 15, in the photosensitive region, 15. The plurality of photoelectric converting portions 3 are juxtaposed along a direction intersecting with the predetermined direction. The first and second shift registers 9, 13 acquire charges transferred from the respective photoelectric converting portions 3 and transfer them in the direction intersecting with the predetermined direction to output them. This achieves the solid-state imaging device capable of quickly reading out the charge generated in the photosensitive region, without complicating image processing.
摘要:
A solid-state image pickup device 1 includes: a plurality of photoelectric converters 2 which are aligned in a predetermined direction and have a potential made higher toward one side of a direction crossing the predetermined direction; a transferring section 6 which is provided on one side of the photoelectric converters 2 in the direction crossing the predetermined direction and transfers charges generated in the photoelectric converters 2 in the predetermined direction; an unnecessary charge discharging drain 7 which is provided adjacent to the photoelectric converter 2 along the direction crossing the predetermined direction and discharges unnecessary charges generated in the photoelectric converter 2 from the photoelectric converter 2; and an unnecessary charge discharging gate 8 which is provided between the photoelectric converter 2 and the unnecessary charge discharging drain 7 and selectively performs cutting-off and release of the flow of unnecessary charges from the photoelectric converter 2 to the unnecessary charge discharging drain 7.
摘要:
In a photodetecting device 3, a wiring board 12 is provided at the front surface side of a photodetecting element 11 so that a first bonding pad region 15 formed on the front surface of the photodetecting element 11 is exposed, and second bonding pads 17B are formed, of the wiring board 12, in the region on a further inner side than first bonding pads 17A. Thereby, in the photodetecting device 3, a forming space for wire bonding can be located at the inside of the photodetecting element 11, so that the wiring board 12 and the photodetecting element 11 can be made almost equal in size. As a result, in the photodetecting device 3, the area that the photodetecting element 11 occupies relative to the photodetecting device 3 can be sufficiently secured, and minimization of the non-sensitive region in the case of a buttable arrangement of the photodetecting devices 3 on a cold plate 2 can be realized.