摘要:
A high performance lateral transistor may be fabricated by first providing a monocrystalline semiconductor body having a principal surface and where the desired transistor is a PNP transistor, a buried N+ region with an N+ reach-through connecting the buried region to said principal surface. The collector region of the transistor is formed into the surface by blanket diffusing P type impurities into the desired region. An insulating layer is formed upon the top surface of the semiconductor body. An opening is made in the insulating layer where the groove or channel-emitter contact is desired. An etching of a substantially vertical walled groove into the monocrystalline semiconductor body using the patterned insulating layer as the etching mask. An N base diffusion is carried out to produce as N region around the periphery of the opening in the body. Oxygen is then ion implanted into the bottom of the groove to form a silicon dioxide region at the bottom of the groove. The P+ polycrystalline silicon layer is then formed on the surface which will in turn fill the groove with this material. The heating of the structure forms the P+ emitter region around the side edges of the P+ polycrystalline silicon filled groove. The P+ polycrystalline layer is the emitter contact, the N+ reach-through connected through the buried N+ region is the base contact and the collector contact is made to the P-type collector region.
摘要:
A semiconductor device including a charge storage element present in a buried dielectric layer of the substrate on which the semiconductor device is formed. Charge injection may be used to introduce charge to the charge storage element of the buried dielectric layer that is present within the substrate. The charge that is injected to the charge storage element may be used to adjust the threshold voltage (Vt) of each of the semiconductor devices within an array of semiconductor devices that are present on the substrate.
摘要:
A germanium lateral bipolar junction transistor (BJT) is formed employing a germanium-on-insulator (GOI) substrate. A silicon passivation layer is deposited on the top surface of a germanium layer in the GOI substrate. Shallow trench isolation structures, an extrinsic base region structure, and a base spacer are subsequently formed. A germanium emitter region, a germanium base region, and a germanium collector region are formed within the germanium layer by ion implantation. A silicon emitter region, a silicon base region, and a silicon collector region are formed in the silicon passivation layer. After optional formation of an emitter contact region and a collector contact region, metal semiconductor alloy regions can be formed. A wide gap contact for minority carriers is provided between the silicon base region and the germanium base region and between the silicon emitter region and the germanium emitter region.
摘要:
A lateral heterojunction bipolar transistor is formed on a semiconductor-on-insulator substrate including a top semiconductor portion of a first semiconductor material having a first band gap and a doping of a first conductivity type. A stack of an extrinsic base and a base cap is formed such that the stack straddles over the top semiconductor portion. A dielectric spacer is formed around the stack. Ion implantation of dopants of a second conductivity type is performed to dope regions of the top semiconductor portion that are not masked by the stack and the dielectric spacer, thereby forming an emitter region and a collector region. A second semiconductor material having a second band gap greater than the first band gap and having a doping of the second conductivity type is selectively deposited on the emitter region and the collector region to form an emitter contact region and a collector contact region, respectively.
摘要:
An example embodiment is a memory cell including a SOI substrate. A first and second set of lateral bipolar transistors are fabricated on the SOI substrate. The first and second set of lateral bipolar transistors are electrically coupled to form two inverters. The inverters are cross coupled to form a memory element.
摘要:
A Bipolar Junction Transistor with an intrinsic base, wherein the intrinsic base includes a top surface and two side walls orthogonal to the top surface, and a base contact electrically coupled to the side walls of the intrinsic base. In one embodiment an apparatus can include a plurality of Bipolar Junction Transistors, and a base contact electrically coupled to the side walls of the intrinsic bases of each BJT.
摘要:
An example embodiment is a memory cell including a SOI substrate. A first and second set of lateral bipolar transistors are fabricated on the SOI substrate. The first and second set of lateral bipolar transistors are electrically coupled to form two inverters. The inverters are cross coupled to form a memory element.
摘要:
A method is provided to fabricate a semiconductor device, where the method includes providing a substrate comprised of crystalline silicon; implanting a ground plane in the crystalline silicon so as to be adjacent to a surface of the substrate, the ground plane being implanted to exhibit a desired super-steep retrograde well (SSRW) implant doping profile; annealing implant damage using a substantially diffusionless thermal annealing to maintain the desired super-steep retrograde well implant doping profile in the crystalline silicon and, prior to performing a shallow trench isolation process, depositing a silicon cap layer over the surface of the substrate. The substrate may be a bulk Si substrate or a Si-on-insulator substrate. The method accommodates the use of an oxynitride gate stack structure or a high dielectric constant oxide/metal (high-K/metal) gate stack structure. The various thermal processes used during fabrication are selected/controlled so as to maintain the desired super-steep retrograde well implant doping profile in the crystalline silicon.
摘要:
A method of fabricating a semiconductor device that includes forming a replacement gate structure on a portion of a semiconductor substrate, wherein source regions and drain regions are formed in opposing sides of the replacement gate structure. A dielectric is formed on the semiconductor substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the semiconductor substrate. A functional gate conductor is epitaxially grown within the opening in direct contact with the exposed portion of the semiconductor substrate. The method is applicable to planar metal oxide semiconductor field effect transistors (MOSFETs) and fin field effect transistors (finFETs).
摘要:
A horizontal heterojunction bipolar transistor (HBT) includes doped single crystalline Ge having a doping of the first conductivity type as the base having an energy bandgap of about 0.66 eV, and doped polysilicon having a doping of a second conductivity type as a wide-gap-emitter having an energy bandgap of about 1.12 eV. In one embodiment, doped polysilicon having a doping of the second conductivity type is employed as the collector. In other embodiments, a single crystalline Ge having a doping of the second conductivity type is employed as the collector. In such embodiments, because the base and the collector include the same semiconductor material, i.e., Ge, having the same lattice constant, there is no lattice mismatch issue between the collector and the base. In both embodiments, because the emitter is polycrystalline and the base is single crystalline, there is no lattice mismatch issue between the base and the emitter.