Abstract:
A light emitting device has a plurality of light emitting elements that are arranged with gaps between the devices on a mounting board in a first direction, a wavelength-conversion member that covers the plurality of light emitting elements, a light reflective resin. Each light emitting element has an n-type semiconductor layer, an active layer provided in a part of the n-type semiconductor layer, and a p-type semiconductor layer provided on the active layer. In a second direction which is perpendicular to the first direction, an n-side electrodes are provided at least in regions at both ends of the n-type semiconductor layer, and a p-side electrode is provided on the surface of the p-type semiconductor layer, and wherein in the second direction, the wavelength-conversion member is positioned to approximately align both sides with both active layer side faces, or to dispose its sides outward of the active layer side faces.
Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.
Abstract:
A method of manufacturing a semiconductor light emitting element includes forming a semiconductor stacked layer body on a substrate, the semiconductor stacked layer body including a first semiconductor layer and a second semiconductor layer; removing a portion of the semiconductor stacked layer body and exposing the first semiconductor layer such that the second semiconductor layer includes an extending portion that extends in a plane direction; forming a conductor layer electrically connecting the first semiconductor layer and the extending portion of the second semiconductor layer; forming a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer; forming a protective film covering at least a portion of the first electrode and at least a portion of the second electrode; and after forming the protective film, removing a portion of the exposed portion of the extending portion.
Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.
Abstract:
A light emitting element includes a semiconductor stacked layer body having an n-type semiconductor layer, an active layer, and a p-type semiconductor layer in this order, and a plurality of exposed portions defined at an upper surface side of the semiconductor stacked layer body, the plurality of exposed portions respectively exposing a part of the n-type semiconductor layer, a p-side electrode arranged in a first region and electrically connected with an upper surface of the p-type semiconductor layer and, arranged at one corner above the p-type semiconductor layer in a plan view, and an n-side electrode electrically integrally connected to the plurality of exposed portions and arranged in a different region in a plan view. In a plan view, the semiconductor stacked layer body has a rectangular shape and the plurality of exposed portions includes, a plurality of first exposed portions arranged at substantially equal intervals along a side of the semiconductor stacked layer body and a plurality of second exposed portions arranged closer to the p-side electrode than the first exposed portions are to the p-side electrode. The plurality of second exposed portions include at least one second exposed portion which has a shortest distance to the first exposed portions, the shortest distance to the first exposed portions being longer than a shortest distance among the first exposed portions. The at least one second exposed portion also has a shortest distance to the p-side electrode shorter than the shortest distance among the first exposed portions.
Abstract:
A side-view type light emitting device has a bottom surface thereof as a light emission surface and a first lateral surface thereof as a mounting surface for mounting on a mounting substrate, and includes a semiconductor layered structure including a first semiconductor layer, an active layer and a second semiconductor layer; a first connecting electrode exposed from the first lateral surface and electrically connected to the first semiconductor layer; a first electrode disposed between the first semiconductor layer and the first connecting electrode; a second connecting electrode exposed from the first lateral surface; a metal wire electrically connecting an upper surface of the second semiconductor layer to the second connecting electrode; and a resin layer. In a direction perpendicular to the light emission surface, the active layer does not overlap with the first connecting electrode, and the active layer does not overlap with the second connecting electrode.
Abstract:
A side-view type light emitting device having a bottom surface thereof as a light emission surface and one side surface thereof as amounting surface for mounting on amounting substrate includes a stacked semiconductor layer having a first semiconductor layer, an active layer, and a second semiconductor layer which are stacked in that order from a side of the bottom surface; a first connecting electrode exposed from the one side surface and electrically connected to the first semiconductor layer; a metal wire having one end thereof electrically connected to an upper surface of the second semiconductor layer; a second connecting electrode exposed from the one side surface and electrically connected to the other end of the metal wire; and a resin layer which covers at least a part of each of the first semiconductor layer, the second semiconductor layer, the first connecting electrode, the second connecting electrode and the metal wire and which is configured to form an upper surface and side surfaces of the light emitting device.
Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.