Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.
Abstract:
A method of manufacturing a semiconductor light emitting element includes forming a semiconductor stacked layer body on a substrate, the semiconductor stacked layer body including a first semiconductor layer and a second semiconductor layer; removing a portion of the semiconductor stacked layer body and exposing the first semiconductor layer such that the second semiconductor layer includes an extending portion that extends in a plane direction; forming a conductor layer electrically connecting the first semiconductor layer and the extending portion of the second semiconductor layer; forming a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer; forming a protective film covering at least a portion of the first electrode and at least a portion of the second electrode; and after forming the protective film, removing a portion of the exposed portion of the extending portion.
Abstract:
An anti-fuse element includes a first electrode, an insulating layer disposed on the first electrode, and a second electrode disposed on the insulating layer. The insulating layer includes a first region and a second region, with a thickness of the first region being smaller than a thickness of the second region. An outer edge of the second electrode is located inward of an outer edge of the insulating layer in a top view.
Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.
Abstract:
A light emitting device includes a semiconductor chip including a p-type semiconductor layer and an n-type semiconductor layer, the semiconductor chip being adapted to emit light between the p-type semiconductor layer and the n-type semiconductor layer; a p-side pad electrode disposed on an upper surface side of the semiconductor chip and over the p-type semiconductor layer; an n-side pad electrode disposed on an upper surface side of the semiconductor chip and over the n-type semiconductor layer; a resin layer disposed to cover the upper surface of the semiconductor chip; a p-side connection electrode and an n-side connection electrode disposed at an outer surface of the resin layer and positioned on the upper surface side of the semiconductor chip; and a metal wire disposed in the resin. The metal wire is adapted to make connection at least one of between the p-side pad electrode and the p-side connection electrode, and between the n-side pad electrode and the n-side connection electrode.
Abstract:
A light emitting device includes a semiconductor chip including a p-type semiconductor layer and an n-type semiconductor layer, the semiconductor chip being adapted to emit light between the p-type semiconductor layer and the n-type semiconductor layer; a p-side pad electrode disposed on an upper surface side of the semiconductor chip and over the p-type semiconductor layer; an n-side pad electrode disposed on an upper surface side of the semiconductor chip and over the n-type semiconductor layer; a resin layer disposed to cover the upper surface of the semiconductor chip; a p-side connection electrode and an n-side connection electrode disposed at an outer surface of the resin layer and positioned on the upper surface side of the semiconductor chip; and a metal wire disposed in the resin. The metal wire is adapted to make connection at least one of between the p-side pad electrode and the p-side connection electrode, and between the n-side pad electrode and the n-side connection electrode.
Abstract:
A method of producing light emitting elements includes providing a wafer that includes a growth substrate and a semiconductor structure formed on the growth substrate, a lower side of the wafer being a growth substrate side, and an upper side of the wafer being a semiconductor structure side as an upper side; forming a separation groove in the wafer from the upper side of the wafer to demarcate portions of the semiconductor structure, the separation groove extending in a depth direction to a location in the wafer; forming a p-electrode and an n-electrode on an upper side of each of the demarcated portions of the semiconductor structure; forming a dielectric multilayer film at an upper side of the wafer, including portions defining the separation groove, by using an atomic layer deposition method; and separating the wafer into a plurality of light emitting elements by removing a portion of the wafer from a lower side of the wafer to at least the location to which the separation groove extends.
Abstract:
A light-emitting device includes a semiconductor light-emitting element, a first resin layer, a first metallic layer, a second resin layer, and a second metallic layer. The semiconductor light-emitting element includes a semiconductor stacked body and an electrode provided on one side of the semiconductor stacked body. The second resin layer is provided on the first resin layer and has a lower surface in contact with the first resin layer and an upper surface opposite to the lower surface. The second metallic layer is provided in the second resin layer and has a metallic lower surface and a metallic upper surface opposite to the metallic lower surface. The metallic upper surface is exposed from the second resin layer. The metallic upper surface of the second metallic layer is at least partially lower in height from the semiconductor stacked body than the upper surface of the second resin layer.
Abstract:
A semiconductor light emitting element having: a semiconductor laminated body; a full surface electrode containing an Ag provided on an upper surface of the p-type semiconductor layer; a cover electrode that covers a surface of the full surface electrode, is provided to contact on the upper surface of the p-type semiconductor layer at an outer edge of the full surface electrode, and is made of an Al-based metal material; a p-side electrode that is provided on a portion of a surface of the cover electrode; a metal oxide film that covers other surfaces of the cover electrode and contains an oxide of a metal material forming the cover electrode; and an insulation film that is made of an oxide and covers a surface of the metal oxide film, is provided.