Abstract:
A mobile computing device includes a first video camera on a first side of the mobile computing device producing a first camera video stream. A second video camera is on a second side of the mobile computing device producing a second camera video stream. A video processor is coupled to the first video camera and the second video camera to receive the first camera video stream and the second camera video stream, respectively. The video processor is coupled to merge the first camera video stream and the second camera video stream to generate a merged video stream. The video processor includes a network interface coupled to upload the merged video stream to a server in real-time using an Internet wireless network. The server broadcasts the merged video stream to a plurality of receivers in real-time.
Abstract:
An apparatus includes a substrate having a surface and a plurality of solder balls arranged on the surface to form a ball grid array. A portion of the plurality of solder balls is arranged to have a pitch between adjacent solder balls. The adjacent solder balls having the pitch have a shape of a truncated sphere. At least one solder ball of the plurality of solder balls is included in a solder island on the surface having a shape that is different than the shape of the truncated sphere.
Abstract:
A mobile computing device includes first, second and third cameras coupled to produce first, second and third camera video streams, respectively. The first camera is on a first side of the mobile computing device, and the second and third cameras are included in a stereo camera on a second side of the mobile computing device. A video processor is coupled to generate an output video stream including a first video layer generated from the first camera video stream. The video processor is further coupled to generate the output video stream to include second and third video layers from the second camera video stream in response to the second and the third camera video streams. The video processor is further coupled to overlay the first video layer between the second video layer and the third video layer in the output video stream.
Abstract:
An apparatus includes a substrate having a surface and a plurality of solder balls arranged on the surface to form a ball grid array. A portion of the plurality of solder balls is arranged to have a pitch between adjacent solder balls. The adjacent solder balls having the pitch have a shape of a truncated sphere. At least one solder ball of the plurality of solder balls is included in a solder island on the surface having a shape that is different than the shape of the truncated sphere.
Abstract:
Video conferencing for mobile platforms is provided by logging a first mobile platform into a conference server, which finds a first peer-to-peer station on a network to connect with the first mobile platform. The first peer-to-peer station is a nearest available peer-to-peer station on the network to the first mobile platform. The first peer-to-peer station on the network is connected to the first mobile platform. First communication data is received at the first peer-to-peer station directly from the first mobile platform. The first communication data is sent directly from the first peer-to-peer station to a second peer-to-peer station through a peer-to-peer connection in the network. The first communication data is sent directly from the second peer-to-peer station to a second mobile platform connected to the second peer-to-peer station. The second peer-to-peer station is a nearest available peer-to-peer station on the network to the second mobile platform.
Abstract:
A method for embedding stereo imagery includes (a) transforming a foreground stereo image, extracted from a source stereo image captured by a first stereo camera, from a scale associated with the first stereo camera to a scale associated with a second stereo camera, to form a transformed foreground stereo image, and (b) embedding the transformed foreground stereo image into a target stereo image, captured by the second stereo camera, to form an embedded stereo image.
Abstract:
A mobile computing device includes a first video camera on a first side of the mobile computing device producing a first camera video stream. A second video camera is on a second side of the mobile computing device producing a second camera video stream. A video processor is coupled to the first video camera and the second video camera to receive the first camera video stream and the second camera video stream, respectively. The video processor is coupled to merge the first camera video stream and the second camera video stream to generate a merged video stream. The video processor includes a network interface coupled to upload the merged video stream to a server in real-time using an Internet wireless network. The server broadcasts the merged video stream to a plurality of receivers in real-time.
Abstract:
A mobile computing device includes first, second and third cameras coupled to produce first, second and third camera video streams, respectively. The first camera is on a first side of the mobile computing device, and the second and third cameras are included in a stereo camera on a second side of the mobile computing device. A video processor is coupled to generate an output video stream including a first video layer generated from the first camera video stream. The video processor is further coupled to generate the output video stream to include second and third video layers from the second camera video stream in response to the second and the third camera video streams. The video processor is further coupled to overlay the first video layer between the second video layer and the third video layer in the output video stream.