Abstract:
Compounds of the formula (I), wherein X is a single bond, CRaRb O, S, NRC, NCORC, CO, SO or SO2; L, L1, L2, L3, L4, L5, L6, L7 and L8 are for example hydrogen, R1 or COT; T denotes T1 or O-T2; T1 and T2 for example are hydrogen, C1-C20alkyl, C3-C12cycloalkyl, C2-C20alkenyl, C5-C12cycloalkenyl, C6-C14aryl, C3-C12heteroaryl, C1-C20alkyl substituted by one or more D, C2-C20alkyl interrupted by one or more E, C2-C20alkyl substituted by one or more D and interrupted by one or more E or Q; R1, R2, R3, R4, Ra, Rb and Rc are T1; D is for example R5, OR5, SR5 or Q1; E is for example O, S, COO or Q2; R5 and R6 for example are hydrogen, C1-C12alkyl or phenyl; Q is for example C6-C12bicycloalkyl, C6-C12bicycloalkenyl or C6-C12tricycloalkyl; Q1 is for example, C6-C14aryl or C3-C12heteroaryl; Q2 is for example C6-C14arylene or C3-C12heteroarylene; Y is an anion; and M is a cation; provided that at least one of L, L1, L2, L3, L4, L5, L6, L7 and L8 is other than hydrogen; and provided that (i) at least one of T1 or T2 is a group Q; or (ii) at least one D is a group Q1; or (iii) at least one E is a group Q2; are suitable as photolatent catalysts.
Abstract:
Compounds of the formula (I), wherein X is a single bond, CRaRbO, S, NRc or NCORc; Z is formula (II) or C3-C20heteroaryl; L, L1, L2, L3, L4, L5, L6, L7 and L8 for example independently of one another are hydrogen or an organic substituent; Ra, Rb and Rc independently of one another are hydrogen or an organic substituent; R is for example is C5-C20heteroaryl or C6-C14 aryl; and Y is an inorganic or organic anion; are suitable as photolatent acid generators.
Abstract:
Compounds of the formula (I), wherein X is a single bond, CRaRb O, S, NRC, NCORC, CO, SO or SO2; L, L1, L2, L3, L4, L5, L6, L7 and L8 are for example hydrogen, R1 or COT; T denotes T1 or O-T2; T1 and T2 for example are hydrogen, C1-C20alkyl, C3-C12cycloalkyl, C2-C20alkenyl, C5-C12cycloalkenyl, C6-C14aryl, C3-C12heteroaryl, C1-C20alkyl substituted by one or more D, C2-C20alkyl interrupted by one or more E, C2-C20alkyl substituted by one or more D and interrupted by one or more E or Q; R1, R2, R3, R4, Ra, Rb and Rc are T1; D is for example R5, OR5, SR5 or Q1; E is for example O, S, COO or Q2; R5 and R6 for example are hydrogen, C1-C12alkyl or phenyl; Q is for example C6-C12bicycloalkyl, C6-C12bicycloalkenyl or C6-C12tricycloalkyl; Q1 is for example, C6-C14aryl or C3-C12heteroaryl; Q2 is for example C6-C14arylene or C3-C12heteroarylene; Y is an anion; and M is a cation; provided that at least one of L, L1, L2, L3, L4, L5, L6, L7 and L8 is other than hydrogen; and provided that (i) at least one of T1 or T2 is a group Q; or (ii) at least one D is a group Q1; or (iii) at least one E is a group Q2; are suitable as photolatent catalysts.
Abstract:
Compounds of the Formula (I), wherein L1, L′1, L″1, L2, L′2, L″2, L3, L′3, L″3, L4, L′4 and L″4 for example are hydrogen or COT; R, R′ and R″ for example are hydrogen, C6-C12aryl or C3-C20heteroaryl; X, X′ and X″ for example are O, S, single bond, NRa or NCORa, T is for example hydrogen, C1-C20alkyl, C3-C12cycloalkyl, C2-C20alkenyl, C5-C12cycloalkenyl, C7-C18cycloalkylenaryl, C5-C18cycloalkylenheteroaryl, C6-C14aryl, providedthat at least one of R, R′ or R″ is unsubstituted or substituted C3-C20heteroaryl; and Y is an inorganic or organic anion; are suitable as photolatent acid generators.
Abstract:
Compounds of the Formula (I), wherein L1, L′1, L″1, L2, L′2, L″2, L3, L′3, L″3, L4, L′4 and L″4 for example are hydrogen or COT; R, R′ and R″ for example are hydrogen, C6-C12aryl or C3-C20heteroaryl; X, X′ and X″ for example are O, S, single bond, NRa or NCORa, T is for example hydrogen, C1-C20alkyl, C3-C12cycloalkyl, C2-C20alkenyl, C5-C12cycloalkenyl, C7-C18cycloalkylenaryl, C5-C18cycloalkylenheteroaryl, C6-C14aryl, providedthat at least one of R, R′ or R″ is unsubstituted or substituted C3-C20heteroaryl; and Y is an inorganic or organic anion; are suitable as photolatent acid generators.
Abstract:
The present invention relates to oligomers of the formula (I), and their use as organic semiconductor in organic devices, especially in organic photovoltaics (solar cells) and photodiodes, or in a device containing a diode and/or an organic field effect transistor. High efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the oligomers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
Abstract:
The present invention relates to polymers comprising a repeating unit of the formula I, or III and their use as organic semiconductor in organic devices, especially an organic field effect transistor (OFET), or a device containing a diode and/or an organic field effect transistor. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors.
Abstract:
The present invention provides heat-sensitive coating compositions, which comprise a color developer of formula (1) or mixtures thereof wherein R1 can be hydrogen, C1-20-alkyl, C3-8-cycloalkyl, C2-10-alkenyl, aryl or SO3H, and R2 and R3 can be the same or different and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8, SR9, SO3H or COOR10 and R4 and R5 can be the same or different, and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8 or SR9, R6, R7, R8, R9 and R10 can be the same or different and can be hydrogen, C1-30-alkyl, C3-8-cycloalkyl, C2-10-alkenyl or aryl, wherein C1-20-alkyl can be unsubstituted or substituted with one or more C3-8-cycloalkyl, C2-10-alkenyl, phenyl, halogen, OR11, NR12R13, SR14, SO3H or COOR15, and aryl can be unsubstituted or substituted with one or more halogen, C1-10-alkyl, halogenated C1-10-alkyl, C3-8-cycloalkyl C2-10-alkenyl, phenyl, OR11, NR12R13, SR14, SO3H or COOR15, wherein R11, R12, R13, R14 and R15 can be the same or different and can be hydrogen, C1-10-alkyl, C3-8-cycloalkyl or C2-10-alkenyl, a process for the preparation of these compositions, a process of coating substrates with these compositions, substrates coated with these compositions, a process for preparing marked substrates using these compositions, marked substrates obtainable by the latter process, and certain color developers.
Abstract:
This invention relates to a polymer containing a unit of formula -[A]-, a unit of formula -[COM1]-, and a unit of formula -[COM2]-, wherein A is a repeating unit of formula (I): COM1 is a repeating unit of formula: and COM2- is a second repeating unit -COM1-, which is different from the first repeating unit -COM1-, a second repeating unit -A-, which is different from the first repeating unit -A-, or a repeating unit of formula: The invention also relates to articles and devices containing the polymer above, as well as processes for preparing the polymer and the articles and devices containing the polymer.
Abstract:
The invention relates to a process for the production of strongly adherent coatings on an inorganic or organic substrate, wherein in a first step a) a low-temperature plasma, a corona discharge or a flame is caused to act on the inorganic or organic substrate, in a second step b) one or more defined photoinitiators or mixtures of defined photoinitiators with monomers, containing at least one ethylenically unsaturated group, or solutions, suspensions or emulsions of the afore-mentioned substances, are applied, preferably at normal pressure, to the inorganic or organic substrate, in a third step c) using suitable methods those afore-mentioned substances are dried and/or irradiated with electromagnetic waves and, optionally, in a fourth step d) on the substrate so pretreated is applied a further coating.