摘要:
A process for sputter deposition wherein high aspect ratio apertures are coated with conductive films exhibiting low bulk resistivity, low impurity concentrations, and regular morphologies. A collimator is used having an aspect ratio that approximates the aspect ratio of the apertures.
摘要:
An epitaxial cobalt silicide film is formed using a thin metal underlayer, which is placed underneath a cobalt layer prior to a heating step which forms the silicide film. More specifically, a refractory metal layer comprising tungsten, chromium, molybdenum, or a silicide thereof, is formed overlying a silicon substrate on a semiconductor wafer. A cobalt layer is formed overlying the refractory metal layer. Next, the wafer is annealed at a temperature sufficiently high to form an epitaxial cobalt silicide film overlying the silicon substrate. Following this annealing step, a cobalt-silicon-refractory metal alloy remains overlying the epitaxial cobalt silicide film. This silicide is then used to form a shallow P-N junction by dopant out-diffusion. First, either a P or N-type dopant is implanted into the silicide film so that substantially none of the dopant is implanted into the underlying silicon substrate. After implanting, the dopant is out-diffused from the silicide film into the underlying silicon substrate at a drive temperature sufficiently high to form the desired P-N junction.
摘要:
The subject invention provides a method of forming recesses in a substrate such as a capacitor so as to increase the surface area thereof and therefore the charge storage capacity of the capacitor. This is accomplished by utilizing a micro mask formed by agglomeration on the surface of the substrate. The agglomerated material, such as gold, titanium nitride or titanium silicide, is used as a mask for selectively etching the substrate to form recesses therein. Alternatively, an oxide transfer mask can be utilized with the agglomerated material micro mask to etch the substrate.
摘要:
A method of forming diffusion barrier stacks on a dielectric for a dual damascene metal chip-level interconnect, and a diffusion barrier stack produced thereby. Alternating layers of a metal and an electrically resistive diffusion barrier are deposited on a dielectric substrate, with different layers having different thicknesses appropriate to their functions in the device. In an example of the present invention, alternating layers of tantalum and tantalum nitride are deposited on a dielectric substrate.
摘要:
A method is provided of cleaning device surfaces for the metallization thereof by treating the surfaces in a chamber equipped for ionized physical vapor deposition or other plasma-based metal deposition process. The surfaces are plasma etched, preferably in a chamber in which the next metal layer is to be deposited onto the surfaces. Also or in the alternative, the surfaces are plasma etched with a plasma containing ions of the metal to be deposited. Preferably also, the etching process is followed by depositing a film of the metal, preferably by ionized physical vapor deposition, in the chamber. The metal may, for example, be titanium that is sputtered from a target within the chamber. The process of depositing the metal, where the metal is titanium, may, for example, be followed by the deposition of a titanium nitride layer. The process steps may be used to passivate the surfaces for transfer of the substrate containing the device surfaces through an oxygen or water vapor containing atmosphere or through another atmosphere containing potential contaminants such as through the transfer chamber of a cluster tool to which are connected CVD or other chemical processing modules. In the preferred embodiment, etching is achieved by maintaining a high ion fraction and high bombardment energy, for example, by applying a high negative bias to the substrate, operating the plasma in a net etching mode, then, by lowering the bombardment energy, for example by lowering the bias voltage, or by lowering the ion fraction, such as by increasing sputtering power, or decreasing plasma power, chamber pressure, a net deposition of the metal by IPVD is brought about.
摘要:
An ionized physical vapor deposition method and apparatus are provided which employs a magnetron magnetic field produced by cathode magnet structure behind a sputtering target to produce a main sputtering plasma, and an RF inductively coupled field produced by an RF coil outside of and surrounding the vacuum of the chamber to produce a secondary plasma in the chamber between the target and a substrate to ionize sputtered material passing from the target to the substrate so that the sputtered material can be electrically or magnetically steered to arrive at the substrate at right angles. A circumferentially interrupted shield or shield structure in the chamber protects the window from material deposits. A low pass LC filter circuit allows the shield to float relative to the RF voltage but to dissipate DC potential on the shield. Advantages provided are that loss of electrons and ions from the secondary plasma is prevented, preserving plasma density and providing high ionization fraction of the sputtered material arriving at the substrate.
摘要:
A multilayer structure having an oxygen or dopant diffusion barrier fabricated of an electrically conductive, thermally stable material of refractory metal-silicon-nitrogen which is resistant to oxidation, prevents out-diffusion of dopants from silicon and has a wide process window wherein the refractory metal is selected from Ta, W, Nb, V, Ti, Zr, Hf, Cr and Mo.
摘要:
An improved method of forming interlayer interconnections employs the same material (or materials that are etched similarly) for both the stud and the upper interconnect in which the stud is surrounded by a collar of conductive material that is also resistant to the etching process used to define the upper wire interconnect.
摘要:
A method to redistribute solid copper deposited by PVD on a wafer topography. The deposited copper is solubilized in a fluid for redistribution. The copper redistribution prevents inherent nonuniformity of the deposited copper film thickness by improving the uniformity of thickness of the copper film on the covered surfaces, such as vertical and bottom surfaces. The method provides the advantages of good adhesion and good grain growth and orientation that are achieved with copper deposited by PVD, and also provides the good step coverage as achieved with copper deposited by CVD.
摘要:
Ionized physical vapor deposition (IPVD) is provided by a method of apparatus for sputtering conductive metal coating material from an annular magnetron sputtering target. The sputtered material is ionized in a processing space between the target and a substrate by generating a dense plasma in the space with energy coupled from a coil located outside of the vacuum chamber behind a dielectric window in the chamber wall at the center of the opening in the sputtering target. Faraday type shields physically shield the window to prevent coating material from coating the window, while allowing the inductive coupling of energy from the coil into the processing space. The location of the coil in the plane of the target or behind the target allows the target to wafer spacing to be chosen to optimize film deposition rate and uniformity, and also provides for the advantages of a ring-shaped source without the problems associated with unwanted deposition in the opening at the target center.