摘要:
An electrostatic chuck system having an electrostatic chuck for securely holding a wafer on a surface of the electrostatic chuck. The electrostatic chuck system comprises a wafer bias sensor coupled to a first portion of the electrostatic chuck for sensing an alternating current signal at the first portion. The wafer bias sensor outputs, responsive to the alternating current signal, a direct current voltage level representative of a direct current bias level of the wafer. The electrostatic chuck system further comprises a variable electrostatic chuck power supply coupled to the wafer bias sensor. The variable electrostatic chuck power supply provides a first potential level to the first portion of the electrostatic chuck. The first potential level is modified, responsive to the direct current voltage level, to substantially maintain a first predefined potential difference between the first portion of the electrostatic chuck and a first region of the wafer overlaying the first portion irrespective of a magnitude of the direct current bias level of the wafer.
摘要:
Performance of field effect transistors and other channel dependent devices formed on a monocrystalline substrate is improved by carrying out a high temperature anneal in a nitrogen releasing atmosphere while the substrate is coated by a sacrificial oxide coating containing easily diffusible atoms that can form negatively charged ions and can diffuse deep into the substrate. In one embodiment, the easily diffusible atoms comprise at least 5% by atomic concentration of chlorine atoms in the sacrificial oxide coating and the nitrogen releasing atmosphere includes NO. The high temperature anneal is carried out for less than 10 hours at a temperature less than 1100° C.
摘要:
A nonvolatile memory has a charge trapping layer which includes a layer (130) made of silicon nitride doped with germanium or phosphorus (210). The germanium or phosphorus contains a large percentage of scattered, non-crystallized atoms uniformly distributed in the silicon nitride layer to increase the charge trapping density.
摘要:
A method of cleanly etching an organic polymer layer disposed over a substrate is disclosed. The invention is particularly useful in damascene processing where openings are etched in the organic polymer layer to form interconnects. The method includes lowering the temperature of the substrate. The method also includes flowing H2O vapor over the organic polymer layer and condensing (or freezing) the H2O vapor on the organic polymer layer. The method additionally includes etching through the organic polymer layer and the condensed H2O vapor to form an opening having a side wall. The condensed (or frozen) H2O vapor is arranged to form a passivating film (of ice) along the side wall of the opening to protect the side wall from etching.
摘要:
After forming a stack of layers (130, 140, 310) for a transistor or a charge-trapping memory over an active area (110), and before etching isolation trenches (160) in the semiconductor substrate (120) with the stack as a mask, spacers (610) are formed on the stack's sidewalls. The trench etch may include a lateral component, so the top edges of the trenches may be laterally recessed to a position under the spacers or the stack. After the etch, the spacers are removed to facilitate filling the trenches with the dielectric (to eliminate voids at the recessed top edges of the trenches). Other embodiments are also provided.
摘要:
A pillar array is printed in positive photoresist using an optical mask (108) having an array of features (310) corresponding to the pillars. The pillars' width/length dimensions are below the exposure wavelength. Superior results can be achieved (less peeling off of the pillars and less overexposure at the center of each pillar) if the mask features (310) are downsized relative to the pillars' target sizes, and the exposure energy is reduced. Negative photoresist (with a dark field mask) can be used, and can provide good results (in terms of pillars peeling-off) if the combined area of the features (410) corresponding to the pillars is smaller than the area between the features (410).
摘要:
Conventional fabrication of top oxide in an ONO-type memory cell stack usually produces Bird's Beak. Certain materials in the stack such as silicon nitrides are relatively difficult to oxidize. As a result oxidation does not proceed uniformly along the multi-layered height of the ONO-type stack. The present disclosure shows how radical-based fabrication of top-oxide of an ONO stack (i.e. by ISSG method) can help to reduce formation of Bird's Beak. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse deeply through already oxidized layers of the ONO stack such as the lower silicon oxide layer. As a result, a more uniform top oxide dielectric can be fabricated with more uniform breakdown voltages along its height. Additionally, adjacent low and high voltage transistors may benefit from simultaneous formation of their gate dielectrics with use of the radical-based oxidizing method.
摘要:
Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse as deeply through already oxidized layers of the sidewall such as silicon oxide layers. As a result, a more uniform sidewall dielectric can be fabricated with more uniform breakdown voltages along it height.
摘要:
A novel preset necktie comprises an outer tie, and inner tie, a zipper, a zipper slider of unique configuration, and a support body. The outer and the inner ties are both separate individual bodies with the upper portion of the inner tie being connected to form a loop and a zipper being disposed to the inner side of the lower portion thereof to form into the tie loop. With the inner tie having been threaded through the support body and the pull tab of the specially designed slider secured to the inner side of said slider, the size of the tie loop can be adjusted by pushing or pulling said support body. A pressing spring plate is provided on the inner side of the slider so as to keep the shape of the tie loop fixed. The upper portion of the outer tie is secured to the support body by means of a rivet and preset into a regular knot such that the user does not have to set the knot each time when wearing then necktie.
摘要:
After forming a stack of layers (130, 140, 310) for a transistor or a charge-trapping memory over an active area (110), and before etching isolation trenches (160) in the semiconductor substrate (120) with the stack as a mask, spacers (610) are formed on the stack's sidewalls. The trench etch may include a lateral component, so the top edges of the trenches may be laterally recessed to a position under the spacers or the stack. After the etch, the spacers are removed to facilitate filling the trenches with the dielectric (to eliminate voids at the recessed top edges of the trenches). Other embodiments are also provided.