摘要:
The fabrication of the read head sensor components where chemical mechanical polishing (CMP) stop layer is deposited above the sensor layers, a first reactive ion etch (RIE) layer and a second RIE layer are deposited, where the second RIE layer is etchable with a different ion species than the first RIE layer. A stencil layer is then deposited and patterned to create an etching stencil having the desired magnetic read track width of the sensor. An RIE step is then conducted in which the second RIE layer is etched. An RIE step for the first RIE layer is then conducted with a different ion species. Thereafter, the sensor layers are milled where the remaining portions of the first and second RIE layers act as a milling mask. A CMP assisted liftoff step is then conducted in which the remaining portions of the ion milling mask are removed.
摘要:
A method and apparatus for defining leading edge taper of a write pole tip is disclosed. The fabrication process uses reactive ion etching to fabricate LET with tight control of the placement of LET's edge and to achieve higher angle for providing a higher effective write field at the pole tip while minimizing ATI for high-density perpendicular recording. The placement of a resist's edge is used to define the LET's edge and a CMP process is used to provide a planar surface for the fabrication of the write pole.
摘要:
A method for manufacturing a magnetic sensor that includes depositing a plurality of mask layers, then forming a stripe height defining mask over the sensor layers. A first ion milling is performed just sufficiently to remove portions of the free layer that are not protected by the stripe height defining mask, the first ion milling being terminated at the non-magnetic barrier or spacer layer. A dielectric layer is then deposited, preferably by ion beam deposition. A second ion milling is then performed to remove portions of the pinned layer structure that are not protected by the mask, the free layer being protected during the second ion milling by the dielectric layer.
摘要:
Embodiments herein generally relate to TMR readers and methods for their manufacture. The embodiments discussed herein disclose TMR readers that utilize a structure that avoids use of the DLC layer over the sensor structure and over the hard bias layer. The capping structure over the sensor structure functions as both a protective layer for the sensor structure and a CMP stop layer. The hard bias capping structure functions as both a protective structure for the hard bias layer and as a CMP stop layer. The capping structures that are free of DLC reduce the formation of notches in the second shield layer so that second shield layer is substantially flat.
摘要:
A magnetic read head having a hard bias structure that both optimizes magnetic bias field and also ensures manufacturability while maintaining sensor stripe height integrity. The read head includes a sensor stack having a back edge and first and second laterally opposed sides. A hard bias structure extending from each of the first and second sides of the sensor stack has a neck portion located near the sensor and having a back edge that is aligned with and parallel to the back edge of the sensor stack. The hard bias structure also includes a flared portion having a back edge that defines an angle relative to the air bearing surface of the read head. The back edge preferably defines and angle of 45-75 degrees relative to the air bearing surface.
摘要:
A method for manufacturing a magnetic sensor using an electrical lapping guide deposited and patterned simultaneously with a hard bias structure of the sensor material. The method includes depositing a sensor material, and patterning and ion milling the sensor material to define a track width of the sensor. A magnetic, hard bias material is then deposited and a second patterning and ion milling process is performed to simultaneously define the back edge of an electrical lapping guide and a back edge of the sensor.
摘要:
Embodiments of the invention operate to narrow the track width of a read head used in a disk drive. In one embodiment, a magnetic read head has a track width of about 40 nm or less. The read head is fabricated by a method that includes fabricating a film stack from a substrate, a sensor material, a stop material, a first release material, a mask material, and a photo resist material. The mask material may include a masking substrate material and a second release material. The film stack is processed by forming a read head image in the photo resist material, removing portions of the film stack that lie outside the read head image of the photo resist material, stripping the film stack to remove the photo resist, mask and first release materials, and milling the sensor material according to the read head image.
摘要:
A method for manufacturing a magnetic read head having a very narrow track width. The method includes the use of a non-Si containing photoresist to form a mask prior to ion milling to define the track-width of the sensor. Previously only Si-containing resists were used. The Si in the resist turned to an oxide, which allowed the photoresist to withstand the reactive ion etching used for image transfer to an underlying hard mask. The Si-containing resist, however, has limitations as to how small the mask can be made. It has been found that a non-Si-containing resist provides better resolution at very narrow track-width definition, and also provides good temperature resistance. Some modifications to the process allow the non-Si-containing resist to be used in the construction of the magnetic read sensor.
摘要:
A magnetic head having non-GMR shunt for perpendicular recording and method for making magnetic head having non-GMR shunt for perpendicular recording is disclosed. A shunt is provided for shunting charge from a read sensor. The shunt is formed co-planar with the read sensor and is fabricated using non-GMR materials.