Abstract:
Resistance of a gate electrode is reduced in a split gate MONOS memory configured by a fin FET. A memory gate electrode of a split gate MONOS memory is formed of a first polysilicon film, a metal film, and a second polysilicon film formed in order on a fin. A trench between fins adjacent to each other in a lateral direction of the fins is filled with a stacked film including the first polysilicon film, the metal film, and the second polysilicon instead of the first polysilicon film only.
Abstract:
When a memory cell is formed over a first fin and a low breakdown voltage transistor is formed over a second fin, the depth of a first trench for dividing the first fins in a memory cell region is made larger than that of a second trench for dividing the second fins in a logic region. Thereby, in the direction perpendicular to the upper surface of a semiconductor substrate, the distance between the upper surface of the first fin and the bottom surface of an element isolation region in the memory cell region becomes larger than that between the upper surface of the second fin and the bottom surface of the element isolation region in the logic region.
Abstract:
A performance of a semiconductor device is improved. A film, which is made of silicon, is formed in a resistance element formation region on a semiconductor substrate, and an impurity, which is at least one type of elements selected from a group including a group 14 element and a group 18 element, is ion-implanted into the film, and a film portion which is formed of the film of a portion into which the impurity is ion-implanted is formed. Next, an insulating film with a charge storage portion therein is formed in a memory formation region on the semiconductor substrate, and a conductive film is formed on the insulating film.
Abstract:
A semiconductor device includes: a fin that is a portion of a semiconductor substrate, protrudes from a main surface of the semiconductor substrate, has a width in a first direction, and extends in a second direction; a control gate electrode that is arranged on the fin via a first gate insulating film and extends in the first direction; and a memory gate electrode that is arranged on the fin via a second gate insulating film and extends in the first direction. Further, a width of the fin in a region in which the memory gate electrode is arranged via the second gate insulating film having a film thickness larger than the first gate insulating film is smaller than a width of the fin in a region in which the control gate electrode is arranged via the first gate insulating film.
Abstract:
A semiconductor device includes: a fin that is a portion of a semiconductor substrate, protrudes from a main surface of the semiconductor substrate, has a width in a first direction, and extends in a second direction; a control gate electrode that is arranged on the fin via a first gate insulating film and extends in the first direction; and a memory gate electrode that is arranged on the fin via a second gate insulating film and extends in the first direction. Further, a width of the fin in a region in which the memory gate electrode is arranged via the second gate insulating film having a film thickness larger than the first gate insulating film is smaller than a width of the fin in a region in which the control gate electrode is arranged via the first gate insulating film.
Abstract:
A semiconductor device includes: a fin that is a portion of a semiconductor substrate, protrudes from a main surface of the semiconductor substrate, has a width in a first direction, and extends in a second direction; a control gate electrode that is arranged on the fin via a first gate insulating film and extends in the first direction; and a memory gate electrode that is arranged on the fin via a second gate insulating film and extends in the first direction. Further, a width of the fin in a region in which the memory gate electrode is arranged via the second gate insulating film having a film thickness larger than the first gate insulating film is smaller than a width of the fin in a region in which the control gate electrode is arranged via the first gate insulating film.
Abstract:
On the upper surface of a fin projecting from the upper surface of a semiconductor substrate, there are formed a control gate electrode through a gate insulating film and a memory gate electrode through a gate insulating film. A semiconductor region is formed in the fin beside the control gate electrode. On the semiconductor region, an insulating film, a first interlayer insulating film, and a second interlayer insulating film are formed. A plug reaching the semiconductor region is formed in the second interlayer insulating film, the first interlayer insulating film, and the insulating film. A cap film is formed between the control gate electrode and the interlayer insulating film, and the plug is positioned also right above the cap film.
Abstract:
To downsize a semiconductor device that includes a non-volatile memory and a capacitive element on a semiconductor substrate. In a capacitive element region of a main surface of a semiconductor substrate, fins protruding from the main surface are arranged along the Y direction while extending in the X direction. In the capacitive element region of the main surface of the semiconductor substrate, capacitor electrodes of the capacitive elements are alternately arranged along the X direction while intersecting the fins. The fins are formed in a formation step of other fins which are arranged in a memory cell array of the non-volatile memory of the semiconductor substrate. One capacitor electrode is formed in a formation step of a control gate electrode of the non-volatile memory. Another capacitor electrode is formed in a formation step of a memory gate electrode of the non-volatile memory.
Abstract:
To enhance the performance of a semiconductor device. In a method for manufacturing a semiconductor device, a metal film is formed over a semiconductor substrate having an insulating film formed on a surface thereof, and then the metal film is removed in a memory cell region, whereas, in a part of a peripheral circuit region, the metal film is left. Next, a silicon film is formed over the semiconductor substrate, then the silicon film is patterned in the memory cell region, and, in the peripheral circuit region, the silicon film is left so that an outer peripheral portion of the remaining metal film is covered with the silicon film. Subsequently, in the peripheral circuit region, the silicon film, the metal film, and the insulating film are patterned for forming an insulating film portion formed of the insulating film, a metal film portion formed of the metal film, and a conductive film portion formed of the silicon film.
Abstract:
The performance of a semiconductor device is improved by preventing 1/f noise from being generated in a peripheral transistor, in the case where the occupation area of photodiodes, which are included in each of a plurality of pixels that form an image pickup device, is expanded. In the semiconductor device, the gate electrode of an amplification transistor is formed by both a gate electrode part over an active region and a large width part that covers the boundary between the active region and an element isolation region and the active region near the boundary and that. has a gate length larger than that of the gate electrode part.