Abstract:
An electronic device can include a channel layer; an access region having an aluminum content substantially uniform or increasing with distance from the channel layer; and a gate dielectric layer overlying and contacting the channel layer. A process of forming an electronic device can include providing a substrate and a channel layer of a III-V semiconductor material over the substrate; forming a masking feature over the channel layer; and forming an access region over the channel layer. In an embodiment, the channel layer can include GaN, and the access region has an aluminum content that is substantially uniform or increases with distance from the channel layer. In another embodiment, the process can include removing at least a portion the masking feature and forming a gate dielectric layer over the channel layer. A dielectric film of the masking feature or the gate dielectric layer contacts the channel layer.
Abstract:
An opto-electronic High Electron Mobility Transistor (HEMT) may include a current channel including a two-dimensional electron gas (2DEG). The opto-electronic HEMT may further include a photoelectric bipolar transistor embedded within at least one of a source and a drain of the HEMT, the photoelectric bipolar transistor being in series with the current channel of the HEMT.
Abstract:
An electronic device can include a high electron mobility transistor that includes a buried region, a channel layer overlying the buried region, a gate electrode, and a drain electrode overlying the buried region. The buried region can extend toward and does not underlie the gate electrode. In a particular aspect, the electronic device can further include a p-type semiconductor member overlying the channel layer. The gate electrode can overlie the channel layer, a p-type semiconductor member overlying the channel layer. The drain electrode can overlie and contact the buried region and the p-type semiconductor member. The p-type semiconductor member can be disposed between the gate and drain electrodes. In another embodiment, a source-side buried region may be used in addition to or in place of the buried region that is coupled to the drain electrode.
Abstract:
An electronic device can include a drain electrode of a high electron mobility transistor overlying a channel layer; a source electrode overlying the channel layer, wherein a lowermost portion of the source electrode overlies at least a portion of the channel layer; and a gate electrode of the high electron mobility transistor overlying the channel layer; and a current limiting control structure that controls current passing between the drain and source electrodes. The current limiting control structure can be disposed between the source and gate electrodes, the current limiting control structure can be coupled to the source electrode and the first high electron mobility transistor, and the current limiting control structure has a threshold voltage. The current limiting control structure can be a Schottky-gated HEMT or a MISHEMT.
Abstract:
In one embodiment, a semiconductor substrate is provided having a localized superjunction structure extending from a major surface. A doped region is then formed adjacent the localized superjunction structure to create a charge imbalance therein. In one embodiment, the doped region can be an ion implanted region formed within the localized superjunction structure. In another embodiment, the doped region can be an epitaxial layer having a graded dopant profile adjoining the localized superjunction structure. The charge imbalance can improve, among other things, unclamped inductive switching (UIS) performance.
Abstract:
An electronic device can include a channel layer including AlzGa(1-z)N, where 0≤z≤0.1; a gate dielectric layer; and a gate electrode of a high electron mobility transistor (HEMT). The gate dielectric layer can be disposed between the channel layer and the gate electrode. The gate electrode includes a gate electrode film that contacts the gate dielectric layer, wherein the gate electrode film can include a material, wherein the material has a sum of an electron affinity and a bandgap energy of at least 6 eV. In some embodiments, the material can include a p-type semiconductor material. The particular material for the gate electrode film can be selected to achieve a desired threshold voltage for an enhancement-mode HEMT. In another embodiment, a portion of the barrier layer can be left intact under the gate structure. Such a configuration can improve carrier mobility and reduce Rdson.
Abstract:
In one embodiment, a semiconductor device has a superjunction structure formed adjoining a low-doped n-type region. A low-doped p-type region is formed adjoining the superjunction structure above the low-doped n-type region and is configured to improve Eas characteristics. A body region is formed adjacent the low-doped p-type region and a control electrode structure is formed adjacent the body region for controlling a channel region within the body region.
Abstract:
An Enhancement Mode (e-mode) Metal Insulator Semiconductor (MIS) High Electron Mobility Transistor (HEMT), or EMISHEMT, with GaN channel regrowth under a gate area, is described. The EMISHEMT with GaN channel regrowth under a gate area provides a normally-off device with a suitably high and stable threshold voltage, while providing a low gate leakage current. A channel layer provides a 2DEG and associated low on-resistance, while a channel-material layer extends through an etched recess and into the channel layer, and disrupts the 2DEG locally to enable the normally-off operation.
Abstract:
A process of forming an electronic device can include forming a channel layer overlying a substrate and forming a barrier layer overlying the channel layer. In an embodiment, the process can further include forming a p-type semiconductor layer over the barrier layer, patterning the p-type semiconductor layer to define at least part of a gate electrode of a transistor structure, and forming an access region layer over the barrier layer. In another embodiment, the process can further include forming an etch-stop layer over the barrier layer, forming a sacrificial layer over the etch-stop layer, patterning the etch-stop and sacrificial layers to define a gate region, forming an access region layer over the barrier layer after patterning the etch-stop and sacrificial layers, and forming a p-type semiconductor layer within the gate region.
Abstract:
An electronic device can include a transistor structure. In an embodiment, the transistor structure can include a channel region and a drift structure including different semiconductor base materials. In another embodiment, the transistor structure can include a source region and a drain structure including a first region, wherein the source region and the first region include different semiconductor base materials and have the same conductivity type. In another aspect, a process of forming an electronic device can include forming a semiconductor layer; forming a body region; patterning the body region and the semiconductor layer to define a trench having a sidewall; forming a first region of a drain structure along the sidewall of the trench, wherein the first region and body region include different semiconductor base materials and different conductivity types.