Abstract:
A system for processing a workpiece includes an inner chamber pivotably supported within an outer chamber. The inner chamber has an opening to allow liquid to drain out. A motor pivots the inner chamber to bring the opening at or below the level of liquid in the inner chamber. As the inner chamber turns, liquid drains out. Workpieces within the inner chamber are supported on a holder or a rotor, which may be fixed or rotating. Multi processes may be performed within the inner chamber, reducing the need to move the workpieces between various apparatus and reducing risk of contamination.
Abstract:
In a method of processing or drying a semiconductor wafer, the wafer is withdrawn from a fluid bath at an inclined angle, and at a selected withdrawal speed. A solvent vapor is provided at the surface of the bath, to create a surface tension gradient and promote drying, or removal of the fluid from the wafer surface. After the wafer is entirely withdrawn from the rinsing liquid, the wafer is rotated briefly, to remove any remaining fluid via centrifugal force, without the fluid drying on the wafer. The wafer is held onto a rotor assembly which rotates the wafer within an enclosed chamber, and which is also pivoted within the chamber, to position the wafer at the incline angle.
Abstract:
A processor for cleaning, rinsing, and drying workpieces includes a process vessel, an ozone injection system for introducing ozone gas into the process vessel, a liquid injection system for introducing a processing fluid into the process vessel, and a drying system for delivering a drying fluid to the process vessel. The processing fluid is introduced into the process vessel such that the processing fluid lies beneath a workpiece. Ozone gas is introduced into the process vessel. The workpiece is then bathed in the processing fluid. A drying fluid is introduced into the process vessel while the processing fluid is evacuated from the process vessel. Microelectronic workpieces can be cleaned and dried in a single vessel, reducing the equipment and space used in manufacturing.
Abstract:
A processor for rinsing and drying of semiconductor substrates includes a process vessel contained within an outer containment vessel. A diluted organic vapor creates a Marangoni effect flow along the surface of processing liquid contained within the process vessel. The process vessel includes porous walls that allow residual chemicals, organic species, and other unwanted materials to flow from the process vessel to the outer containment vessel. The porous walls allow for the maintenance of a stable surface tension gradient to sustain a consistent Marangoni force for even drying. Replacement processing fluid is preferably introduced to the process vessel to prevent the build up of organic species in the surface layer of the processing fluid.
Abstract:
In a system for cleaning a workpiece or wafer, a boundary layer of heated liquid is formed on the workpiece surface. Ozone is provided around the workpiece. The ozone diffuses through the boundary layer and chemically reacts with contaminants on the workpiece surface. A jet of high velocity heated liquid is directed against the workpiece, to physically dislodge or remove a contaminant from the workpiece. The jet penetrates through the boundary layer at the point of impact. The boundary layer otherwise remains largely undisturbed. Preferably, the liquid includes water, and may also include a chemical. Steam may also be jetted onto the workpiece, with the steam also physically removing contaminants, and also heating the workpiece to speed up chemical cleaning. The workpiece and the jet of liquid are moved relative to each other, so that substantially all areas of the workpiece surface facing the jet are exposed at least momentarily to the jet. Sonic or electromagnetic energy may also be introduced to the workpiece.
Abstract:
A processor for processing microelectronic workpieces includes a process vessel adapted to hold one or more microelectronic workpieces vertically within a rotatable fixture. A drive motor is coupled to the rotatable fixture to spin the rotatable fixture during processing. A processing fluid is introduced into the process vessel for processing of the microelectronic workpieces. The rotatable fixture is raised out of the processor for loading/unloading. The processor can be used to clean, plate, etch, strip, rinse, or dry microelectronic workpieces.
Abstract:
In a post chemical-mechanical polishing (CMP) procedure for cleaning a workpiece, a cleaning solution is delivered to the core of a brush where the solution is absorbed by the brush and then applied by the brush onto the workpiece. The cleaning solution is uniformly applied to the workpiece. The volumes of solutions used in the scrubbing process is reduced. A thin oxide layer is etched. A hydrophilic surface state is maintained. The workpiece is then rinsed and dried in a centrifugal processing between upper and lower rotors. A high level clean is achieved while consumption of rinsing and drying fluids is reduced.
Abstract:
A device for the side-specific cleaning of a microelectronic workpiece having a front side, a back side, and an edge includes a chamber, a fixture within the chamber that is adapted to hold one or more microelectronic workpieces. At least one transducer is located within the chamber and preferably adjacent to the edge of the microelectronic workpiece. The method includes the steps of immersing the front side, back side, and edge of the microelectronic workpiece in a first processing fluid while preferably rotating the microelectronic workpiece. The microelectronic workpiece is then rinsed and dried and immersed in a second processing fluid such that the back side and edge of the microelectronic workpiece are immersed in the second processing fluid, while preferably rotating the microelectronic workpiece, without exposing the front surface of the microelectronic workpiece to the second processing fluid. Vibrational energy, preferably in the form of megasonics, is introduced during at least one of the immersions steps.
Abstract:
Workpieces requiring low levels of contamination, such as semiconductor wafers, are loaded into a rotor within a process chamber. The process chamber has a horizontal drain opening in its cylindrical wall. The chamber is closed via a door. A process or rinsing liquid is introduced into the chamber. The liquid rises to a level so that the workpieces are immersed in the liquid. The chamber slowly pivots or rotates to move the drain opening down to the level of the liquid. The liquid drains out through the drain opening. The drain opening is kept near the surface of the liquid to drain off liquid at a uniform rate. An organic solvent vapor is introduced above the liquid to help prevent droplets of liquid from remaining on the workpieces as the liquid drains off. The rotor spins the workpieces to help to remove any remaining droplets by centrifugal force.
Abstract:
A system for processing a workpiece includes an inner chamber pivotably supported within an outer chamber. The inner chamber has an opening to allow liquid to drain out. A motor pivots the inner chamber to bring the opening at or below the level of liquid in the inner chamber. As the inner chamber turns, liquid drains out. Workpieces within the inner chamber are supported on a holder or a rotor, which may be fixed or rotating. Multi processes may be performed within the inner chamber, reducing the need to move the workpieces between various apparatus and reducing risk of contamination.