Abstract:
In a method for processing a workpiece to remove material from a first surface of the workpiece, steam is introduced onto the first surface under conditions so that at least some of the steam condenses and forms a liquid boundary layer on the first surface. The condensing steam helps to maintain the first surface of the workpiece at an elevated temperature. Ozone is provided around the workpiece under conditions where the ozone diffuses through the boundary layer and reacts with the material on the first surface. The temperature of the first surface is controlled to maintain condensation of the steam.
Abstract:
A processor for cleaning, rinsing, and drying workpieces includes a process vessel, an ozone injection system for introducing ozone gas into the process vessel, a liquid injection system for introducing a processing fluid into the process vessel, and a drying system for delivering a drying fluid to the process vessel. The processing fluid is introduced into the process vessel such that the processing fluid lies beneath a workpiece. Ozone gas is introduced into the process vessel. The workpiece is then bathed in the processing fluid. A drying fluid is introduced into the process vessel while the processing fluid is evacuated from the process vessel. Microelectronic workpieces can be cleaned and dried in a single vessel, reducing the equipment and space used in manufacturing.
Abstract:
In a method for cleaning for cleaning metallic ion contamination, and especially copper, from wafer containers, the containers are loaded into a cleaning apparatus. The containers are sprayed with a dilute chelating agent solution. The chelating agent solution removes metallic contamination from the containers. The containers are then rinsed with a rinsing liquid, such as deionized water and a surfactant. The containers are then dried, preferably by applying heat and/or hot air movement.
Abstract:
In a method for cleaning for cleaning metallic ion contamination, and especially copper, from wafer containers, the containers are loaded into a loader of a cleaning apparatus. The containers are sprayed with a dilute chelating agent solution, while the rotor is spinning. The chelating agent solution removes metallic contamination from the containers. The containers are then sprayed with a rinsing liquid, such as deionized water and a surfactant while the rotor is spinning and heat is applied. The containers are then dried by applying heat, hot air movement and spinning the rotor.
Abstract:
An apparatus for supplying a mixture of a treatment liquid and ozone for treatment of a surface of a workpiece, and a corresponding method are set forth. The preferred embodiment of the apparatus comprises a liquid supply line that is used to provide fluid communication between a reservoir containing the treatment liquid and a treatment chamber housing the workpiece. A heater is disposed to heat the workpiece, either directly or indirectly. Preferably, the workpiece is heated by heating the treatment liquid that is supplied to the workpiece. One or more nozzles accept the treatment liquid from the liquid supply line and spray it onto the surface of the workpiece while an ozone generator provides ozone into an environment containing the workpiece.
Abstract:
A semiconductor wafer processing system has a carrier including wafer slots. A process robot engages the carrier and installs the carrier into a rotor within a process chamber. The rotor has a tapered or stepped inside surface matching a tapered or stepped outside surface of the carrier. Wafer retainers on the carrier pivot to better secure wafers within the carrier.
Abstract:
A system for high-pressure drying of semiconductor wafers includes the insertion of a wafer into an open vessel, the immersion of the wafer in a liquid, pressure-sealing of the vessel, pressurization of the vessel with an inert gas, and then the controlled draining of the liquid using a moveable drain that extracts water from a depth maintained just below the gas-liquid interface. Thereafter, the pressure may be reduced in the vessel and the dry and clean wafer may be removed. The high pressure suppresses the boiling point of liquids, thus allowing higher temperatures to be used to optimize reactivity. Megasonic waves are used with pressurized fluid to enhance cleaning performance. Supercritical substances are provided in a sealed vessel containing a wafer to promote cleaning and other treatment.
Abstract:
A process and apparatus for drying semiconductor wafers, includes the controlled-rate extraction of a wafer immersed in rinsing liquid, irradiation of the wafer using high intensity lights or filaments along the wafer-liquid interface, and delivery of gas streams against the wafer along the wafer-liquid interface using a gas delivery system. Heating is controlled to create a temperature gradient without evaporating rinsing fluid adhering to surfaces of the wafer. Heating by the radiation sources creates a temperature gradient in the wafer in the irradiated region that simultaneously generates a surface tension gradient in the water adhering to the wafer. The gas delivery system removes the bulk of the water adhering to the wafer surface, and also suppresses the height of the rinsing liquid adhering to the wafer, providing faster extraction of dry and highly clean wafers from the rinsing liquid. A solvent vapor is optionally injected at the wafer-liquid interface, to reduce adhesion of the liquid to the vapor.
Abstract:
An etch release for a MEMS device on a substrate includes etching the substrate with an etchant vapor and a wetting vapor. A thermal bake of the MEMS device, after the etch release may be used to volatilize residues. A supercritical fluid may also be used to remove residual contaminants. The combination of the etchant vapor, such as HF, and the wetting vapor, such as an alcohol vapor, improves the uniformity of the etch undercut on the substrate.
Abstract:
A method for cleaning a semiconductor workpiece having a metal layer in a processing chamber includes the steps of introducing a liquid solution including dissolved carbon dioxide onto the workpiece, and introducing ozone into the processing chamber. The ozone oxidizes contaminants on the workpiece, while the carbon dioxide inhibits corrosion of the metal layer. The liquid solution is preferably heated to a temperature greater than 40null C., and preferably comprises deionized water injected with carbon dioxide gas. The workpiece is preferably rotated within the processing chamber during the cleaning process. The ozone may be entrained in the liquid solution before the liquid solution is introduced onto the workpiece, or the ozone may be introduced separately into the processing chamber.