Abstract:
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of the area of the opening region to the area of the masking region in the second region.
Abstract:
Provided are a light emitting diode (LED) in which a conductive barrier layer surrounding a reflective metal layer is defined by a protective insulating layer, and a method of manufacturing the same. A reflection pattern including a reflective metal layer and a conductive barrier layer is formed on an emission structure in which a first semiconductor layer, an active layer, and a second semiconductor layer are formed. The conductive barrier layer prevents diffusion of a reflective metal layer and extends to a protective insulating layer recessed under a photoresist pattern having an overhang structure during a forming process. Accordingly, a phenomenon where the conductive barrier layer is in contact with sidewalls of the photoresist pattern having an over-hang structure and the reflective metal layer forms points is prevented. Thus, LED modules having various shapes may be manufactured.
Abstract:
Provided are a light emitting diode (LED) in which a conductive barrier layer surrounding a reflective metal layer is defined by a protective insulating layer, and a method of manufacturing the same. A reflection pattern including a reflective metal layer and a conductive barrier layer is formed on an emission structure in which a first semiconductor layer, an active layer, and a second semiconductor layer are formed. The conductive barrier layer prevents diffusion of a reflective metal layer and extends to a protective insulating layer recessed under a photoresist pattern having an overhang structure during a forming process. Accordingly, a phenomenon where the conductive barrier layer is in contact with sidewalls of the photoresist pattern having an over-hang structure and the reflective metal layer forms points is prevented. Thus, LED modules having various shapes may be manufactured.
Abstract:
A wafer level light-emitting diode (LED) array includes: a growth substrate; a plurality of LEDs arranged over the substrate, each including a first semiconductor layer, an activation layer, and a second semiconductor layer; a plurality of upper electrodes formed from a common material and electrically connected to the first semiconductor layers of the corresponding LEDs; and first and second pads arranged over the upper electrodes. The LEDs are connected in series by the upper electrodes, the first pad is electrically connected to an input LED from among the LEDs connected in series, and the second pad is electrically connected to an output LED from among the LEDs connected in series. Accordingly, a flip chip-type LED array can be provided which can be driven with a high voltage.
Abstract:
A light emitting diode array is provide to include: a substrate; light emitting diodes positioned over the substrate, each including a first semiconductor layer, an active layer, and a second semiconductor layer, wherein each light emitting diode is disposed to form a first via hole structure exposing a portion of the corresponding first semiconductor layer; lower electrodes disposed over the second semiconductor layer; a first interlayer insulating layer disposed over the lower electrodes and configured to expose the portion of the first semiconductor layer of corresponding light emitting diodes; upper electrodes electrically connected to the first semiconductor layer through the first via hole structure, wherein the first via hole structure is disposed in parallel with one side of the corresponding second semiconductor layer and the first interlayer insulating layer is disposed to form a second via hole structure exposing a portion of the lower electrodes.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of the area of the opening region to the area of the masking region in the second region.
Abstract:
A light emitting diode array is provide to include: a substrate; light emitting diodes positioned over the substrate, each including a first semiconductor layer, an active layer, and a second semiconductor layer, wherein each light emitting diode is disposed to form a first via hole structure exposing a portion of the corresponding first semiconductor layer; lower electrodes disposed over the second semiconductor layer; a first interlayer insulating layer disposed over the lower electrodes and configured to expose the portion of the first semiconductor layer of corresponding light emitting diodes; upper electrodes electrically connected to the first semiconductor layer through the first via hole structure, wherein the first via hole structure is disposed in parallel with one side of the corresponding second semiconductor layer and the first interlayer insulating layer is disposed to form a second via hole structure exposing a portion of the lower electrodes.
Abstract:
A wafer level light-emitting diode (LED) array includes: a growth substrate; a plurality of LEDs arranged over the substrate, each including a first semiconductor layer, an activation layer, and a second semiconductor layer; a plurality of upper electrodes formed from a common material and electrically connected to the first semiconductor layers of the corresponding LEDs; and first and second pads arranged over the upper electrodes. The LEDs are connected in series by the upper electrodes, the first pad is electrically connected to an input LED from among the LEDs connected in series, and the second pad is electrically connected to an output LED from among the LEDs connected in series. Accordingly, a flip chip-type LED array can be provided which can be driven with a high voltage.
Abstract:
A light emitting diode array is provide to include: a substrate; light emitting diodes positioned over the substrate, each including a first semiconductor layer, an active layer, and a second semiconductor layer, wherein each light emitting diode is disposed to form a first via hole structure exposing a portion of the corresponding first semiconductor layer; lower electrodes disposed over the second semiconductor layer; a first interlayer insulating layer disposed over the lower electrodes and configured to expose the portion of the first semiconductor layer of corresponding light emitting diodes; upper electrodes electrically connected to the first semiconductor layer through the first via hole structure, wherein the first via hole structure is disposed in parallel with one side of the corresponding second semiconductor layer and the first interlayer insulating layer is disposed to form a second via hole structure exposing a portion of the lower electrodes.