Abstract:
An electronic component incorporated substrate includes a first substrate and a second substrate that are electrically connected to each other by a spacer unit. An electronic component is mounted on the first substrate and arranged between the first substrate and the second substrate. An encapsulating resin fills a space between the first substrate and the second substrate to encapsulate the electronic component. The spacer unit includes a stacked structure of a metal post and a solder ball stacked in a stacking direction of the first substrate and the second substrate. The spacer unit further includes an insulation layer that is formed on the second substrate and covers a side wall of the metal post.
Abstract:
A loop heat pipe includes a stacked structure formed by metal layers that are stacked, including an outermost metal layer arranged at one outermost surface of the loop heat pipe. The stacked structure forms an evaporator configured to vaporize a working fluid and generate vapor, a condenser configured to liquefy the vapor of the working fluid, a vapor pipe configured to connect the evaporator and the condenser, and a liquid pipe configured to connect the evaporator and the condenser, to form a loop-shaped passage. The outermost metal layer has an outer surface formed with grooves.
Abstract:
A built-in electronic component substrate includes a first substrate, an electronic component including side surfaces and mounted on the first substrate, a first resin provided on the first substrate and covering the side surfaces of the electronic component, a second substrate provided above the electronic component and the first resin and layered on the first substrate, a substrate connection member provided between the first and the second substrates and electrically connecting the first and the second substrates, a second resin filling in between the electronic component and the second substrate and in between the first resin and the second substrate, and a third resin filling in between the first and the second substrates and encapsulating the substrate connection member, the electronic component, the first resin, and the second resin.
Abstract:
A heat pipe includes a first metal layer forming a liquid layer configured to move a working fluid that is liquefied from vapor, and a second metal layer forming a vapor layer configured to move the vapor of the working fluid that is vaporized. The first metal layer includes first cavities that cave in from a first surface of the first metal layer and are arranged apart from each other, second cavities that cave in from a second surface of the first metal layer opposite to the first surface of the first metal layer, first pores partially communicating with the first cavities and the second cavities, respectively, and second pores partially communicating side surfaces of the second cavities that are adjacent to each other. The second metal layer is provided on the first surface of the first metal layer and includes an opening exposing the plurality of first cavities.
Abstract:
A loop heat pipe includes a first loop heat pipe including a first evaporator, a first condenser, a first liquid pipe, and a first vapor pipe forming a first loop together with the first liquid pipe, a second loop heat pipe including a second evaporator, a second condenser, a second liquid pipe, and a second vapor pipe forming a second loop together with the second liquid pipe, and a connecting part to connect the first condenser and the second evaporator. The first loop and the second loop are separate and independent from each other. The first loop heat pipe, the second loop heat pipe, and the connecting part are integrally formed by a metal.
Abstract:
A loop heat pipe includes an evaporator that vaporizes working fluid; a condenser that condenses the working fluid; a liquid line that connects the evaporator and the condenser; and a vapor line that connects the evaporator and the condenser, wherein the evaporator, the vapor line, the liquid line and the condenser form a flow path that is a loop through which the working fluid or vapor of the working fluid flows, wherein in the condenser and the vapor line, a wall portion of the flow path is constituted by a metal layer, wherein a drain line formed to be separated and apart from the flow path is provided in the wall portion, and wherein a drawing line connecting the drain line and the flow path is provided in the wall portion.
Abstract:
A loop heat pipe includes an evaporator that vaporizes working fluid; a condenser that condenses the working fluid; a liquid line that connects the evaporator and the condenser; a vapor line that connects the evaporator and the condenser to form a loop with the liquid line; and a porous body provided in the liquid line, and including a first metal layer that includes a first bottomed hole that is concaved from one surface of the first metal layer, and a second bottomed hole that is concaved from another surface of the first metal layer, the other surface being opposite of the one surface, the first bottomed hole and the second bottomed hole partially communicating with each other to form a pore.
Abstract:
An electronic component incorporated substrate includes a first substrate and a second substrate electrically connected to each other by a spacer unit. An electronic component is mounted on the first substrate and arranged between the first substrate and the second substrate. A first encapsulating resin is formed between the first substrate and the second substrate to encapsulate the electronic component. A second encapsulating resin is formed on a first surface of the first encapsulating resin to fill a space between the first encapsulating resin and the second substrate. The spacer unit includes a stacked structure of a first solder ball, a metal post, and a second solder ball stacked in a stacking direction of the first substrate and the second substrate.
Abstract:
A loop heat pipe includes a first flow path, a second flow path over the first flow path, and a divider provided between the first flow path and the second flow path. Each of the first flow path and the second flow path includes an evaporator configured to vaporize a working fluid, a condenser configured to condense the working fluid, a first transport pipe connecting the evaporator and the condenser, and a second transport pipe connecting the evaporator and the condenser and forming a loop flow path with the transport pipe.
Abstract:
A heat pipe includes a first metal layer forming a liquid layer configured to move a working fluid that is liquefied from vapor, and a second metal layer forming a vapor layer configured to move the vapor of the working fluid that is vaporized. The first metal layer includes first cavities that cave in from a first surface of the first metal layer and are arranged apart from each other, second cavities that cave in from a second surface of the first metal layer opposite to the first surface of the first metal layer, first pores partially communicating with the first cavities and the second cavities, respectively, and second pores partially communicating side surfaces of the second cavities that are adjacent to each other. The second metal layer is provided on the first surface of the first metal layer and includes an opening exposing the plurality of first cavities.