摘要:
Disclosed are devices and methods related to metallization of semiconductors. A metalized structure can include a stack disposed over a compound semiconductor, with the stack including a barrier, a copper (Cu) layer disposed over the barrier, and a first titanium (Ti) layer disposed over the Cu layer. The metalized structure can further include a sputtered titanium tungsten (TiW) layer disposed over the first Ti layer. The barrier can include an assembly of titanium nitride (TiN) and Ti layers. The metalized structure can further include a second Ti layer disposed over the sputtered TiW layer.
摘要:
A method for establishing and closing at least one trench of a semiconductor component, in particular a micromechanical or electrical semiconductor component, having the following steps: applying at least one metal layer over the trench to be formed; forming a lattice having lattice openings in the at least one metal layer over the trench to be formed; forming the trench below the metal lattice, and closing the lattice openings over the trench.
摘要:
An integrated circuit with high density pad structures is provided. The circuit has circuitry covered by an insulating layer. Pads are formed on the insulating layer overlapping the circuitry. A pattern of holes in the insulating layer allows electrical connections to be formed between the pads and the underlying circuitry. Because the pads are formed on top of the circuitry, the die area occupied by pads is reduced relative to the die area occupied by circuitry. The pads are suitable for flip-chip bonding to a package such as a multichip module or conventional wire bonding.
摘要:
A method for forming thin film patterns in the fabrication of integrated circuits utilizing a lift-off mask in an inverse vertical relationship with the desired metal film. The method involves the preliminary blanket deposition of the metal in-point, followed by a coating of a patterned lift-off mask over which is blanket coated a dry-etch resistant material with subsequent removal of the lift-off mask, and dry etching of the exposed metal film. In one embodiment the dry-etch mask can comprise a diverse metal layer when a dry-etch ambient is employed which is passive to the diverse metal. In another embodiment, where dry etch ambients are employed which are corrosive to the diverse metal which is desired in the final structure, it can be covered with a blanket layer of any convenient dry-etch resistant material, such as magnesium oxide, prior to removal of the lift-off mask. This method has effective application in the fabrication of Schottky barrier diodes, transistors, and other electronic components or discrete and integrated devices requiring high quality metal to semiconductor junctions or interfaces.
摘要:
A semiconductor package includes a molding compound, a chip and a conductive pad, wherein the chip is electrically connected to the conductive pad and both are encapsulated in the molding compound. An anchor flange is formed around a top surface of the conductive pad by over plating. When the conductive pad is embedded in the molding compound, the anchor flange engages the molding compound to prevent the conductive pad from separation. Bottoms of a chip and the conductive pad are exposed from the molding compound for electrically soldering to a circuit board.
摘要:
Disclosed are devices and methods related to metallization of semiconductors. A metalized structure can include a stack disposed over a compound semiconductor, with the stack including an ohmic metal layer, a titanium/chromium layer, a metal nitride layer such as a titanium nitride layer, and a copper/aluminum layer. The titanium/chromium layer and metal nitride layer can act as a barrier between the copper/aluminum layer and a substrate.
摘要:
A bipolar device having a level difference between the contact area level of a base electrode and a base region in a silicon substrate, and the contact area level of an emitter electrode and an emitter region in the silicon substrate in the range of 0.03 .mu.m to 0.1 .mu.m by removing undesirable impurities from the emitter region and a predetermined horizontal distance between a sidewall and a device isolation film does not generate dislocation and show good electric characteristics.
摘要:
There is provided a method of forming an electrode on the surface of a semiconductor substrate which comprises the steps of(A) depositing on the surface of a semiconductor substrate an insulation layer provided with at least one opening for contact between the electrode and the semiconductor substrate;(B) coating a plurality of spacer layers made of insulation material on the surface of the insulation layer inclusive of the contact opening;(C) selectively depositing a photoresist layer on the uppermost are of said plural spacer layers, said uppermost spacer layer in direct contact with the photoresist layer being designed to be etched at a lower rate than the immediately underlying spacer layer;(D) using the photoresist layers as a mask to selectively etch the spacer layers until said opening is exposed;(E) depositing a metal layer on the surface of the semiconductor substrate inclusive of said opening and photoresist layer; and(F) removing the photoresist layer and the portions of the metal layer formed, such that the portion of the metal layer which is deposited on the surface of the semiconductor substrate exposed through the opening constitute the electrode, and the spacer layers remaining on the insulation layer form protective layers for the surface of the semiconductor substrate.
摘要:
This relates to a shallow diffused washed emitter process. Prior to diffusion of an emitter into the base region of an active element, a portion of the surface base region is etched away. During this process, lateral etch occurs and extends beneath a portion of the oxide mask. During subsequent diffusion of the emitter, greater lateral diffusion occurs immediately beneath the oxide layer. Deposition of a metal contact causes a closed loop cavity around the periphery of the emitter area to be formed. In this way, the metal contacts only the broadest portion of the emitter region.
摘要:
A semiconductor device having a Schottky barrier junction formed in the bottom of a polygonal recess on a surface of a semiconductor substrate comprises an undercut in the recess beneath an insulating mask formed on the substrate, and a metal passing through the mask and extending to the bottom of the recess for forming said junction. The undercut provides an enclosed spacing encircling the junction portion of said metal and said semiconductor, thereby improving the backward breakdown voltage characteristic therein.