Abstract:
A light emitting device includes a substrate elongated in a lengthwise direction; a plurality of LED chips disposed on the substrate in an intermediate region in widthwise direction, and aligned along the lengthwise direction at a distance of 80 μm or less; and interconnection wirings formed on regions outside the intermediate region in the widthwise direction; wherein each of the LED chips has a p-side electrode disposed on the substrate, a p-type semiconductor layer disposed on the p-side electrode, an active layer formed on the p-type semiconductor layer, and an n-type semiconductor layer formed on the active layer, and has a region in which the n-type semiconductor layer, the active layer, and the p-type semiconductor layer are patterned, and an n-side electrode formed selectively on a surface of the n-type semiconductor layer and connected to the p-side electrode of an adjacent LED chip through the interconnection wiring.
Abstract:
A light-emitting diode apparatus includes a support substrate; and a light-emitting diode array formed of multiple light-emitting diodes arranged two-dimensionally on the support substrate, constituting a light distribution center having a highest brightness in the light-emitting diode array, wherein the multiple light-emitting diodes are divided into a plurality of control units, drive currents of which can be individually controlled, wherein the plurality of control units include a plurality of composite control units in each of which a plurality of light-emitting diodes are connected in series, and wherein among the plurality of light-emitting diodes in each of the composite control units, a light-emitting diode which is positioned farther from the light distribution center has a larger light-emitting area than that of a light-emitting diode which is positioned nearer from the light distribution center.
Abstract:
An LED device includes first and second LED elements containing a lower layer of first conductivity type, an active layer, and an upper layer of second conductivity type, wherein the second LED element has third and fourth electrodes on the lower layer, recessed portion having a side surface exposing the upper, active and lower layers, and reaching the third electrode, fifth electrode disposed on the upper layer extending on the side surface of the recessed portion, and connected with the third electrode, and groove extending from the upper layer and reaching the active layer between the third and fourth electrodes to electrically separate the third electrode from the fourth electrode.
Abstract:
A piezoelectric actuator is formed like a rectangular flat plate, and includes a substrate layer, a lower electrode layer, a piezoelectric layer, and an upper electrode layer formed in this order from bottom to top in a thickness direction. The upper electrode layer is constituted of a plurality of electrode segments separated in a surface direction, and connection wires connecting the electrode segments which are adjoining in the surface direction.
Abstract:
A semiconductor light-emitting element comprises: a semiconductor structure layer including a first semiconductor layer having a first conductivity type, a light-emitting layer and a second semiconductor layer having a second conductivity type opposite to the first conductivity type being laminated in sequence; a first electrode including a first electrode layer formed on the first semiconductor layer and a first contact electrode connected to the first electrode layer at a position displaced from a center of the first electrode layer in an intra-layer direction of the first electrode layer; and a second electrode extending through the first electrode layer, the first semiconductor layer and the light-emitting layer and being connected to the second semiconductor layer.
Abstract:
Provided are a highly reliable semiconductor light-emitting element having uniform protrusions that are arranged regularly and have the same size and a method of producing the same. The method of producing a semiconductor light-emitting element according to the present invention includes: forming a mask layer having a plurality of openings that are arranged at equal intervals along a crystal axis of a semiconductor structure layer on the surface of the semiconductor structure layer; performing a plasma treatment on the surface of the semiconductor structure layer exposed from the openings in the mask layer; removing the mask layer; and wet-etching the surface of the semiconductor structure layer to form protrusions on the surface of the semiconductor structure layer.
Abstract:
A semiconductor light emitting element array contains: a support substrate; a plurality of semiconductor light emitting elements disposed on said support substrate, a pair of adjacent semiconductor light emitting elements being separated by street, each of the semiconductor light emitting elements including; a first electrode formed on the support substrate, a semiconductor lamination formed on the first electrode and including a stack of a first semiconductor layer having a first conductivity type, an active layer formed on the first semiconductor layer, and a second semiconductor layer formed on the active layer, and having a second conductivity type different from the first conductivity type, and a second electrode selectively formed on the second semiconductor layer of the semiconductor lamination; and connection member having electrical insulating property and optically propagating property, disposed to cover at least part of the street between a pair of adjacent semiconductor laminations.
Abstract:
An optical scanning device includes a control unit, a light deflector, light detection units, and a light source. A mirror unit of the light deflector has a flat reflection part for generating scanning light and a groove-shaped reflection part for generating twice reflected light, and performs reciprocating rotation about a rotation axis. The light detection units are disposed at positions on the scanning trajectory of the scanning light where the twice reflected light is received, and are each divided into light detectors in the scanning direction of the scanning light by a division line. The control unit detects the deflection angle θ of the mirror unit based on both the output of the light detector and the output of the light detector.
Abstract:
The light-emitting device of the present invention includes: a support; a plurality of light-emitting elements arranged in a row on the support; and a conductor trace portion configured from a plurality of conductor traces which extend on the support from one end portion of the row to the other end portion of the row which are each electrically connected to each of the plurality of light-emitting elements. Each of the plurality of conductor traces is configured such that the trace width in the direction of extension in a region under one light-emitting element to which the conductor trace is electrically connected is greater than the trace width in a region extending in the direction of extension side by side with a conductor trace connected to a light-emitting element disposed closer to the one end portion than the one light-emitting element is.
Abstract:
A semiconductor light-emitting device comprises an optical semiconductor multilayer disposed above a support substrate, which has a structure in which a first semiconductor layer having a first conductivity type, an active layer having light emitting properties, and a second semiconductor layer having a second conductivity type different from the first conductivity type are sequentially stacked from the support substrate side, in which a groove, which has a height exceeding at least the active layer from the support substrate side, is formed along an outer edge of the optical semiconductor multilayer, and which includes an external region being a region further outside than the groove, an inner region being a region further inside than the groove, and a connection region corresponding to a region where the groove is provided, in plan view.