摘要:
A semiconductor stacked body includes: a first semiconductor layer containing a group III-V compound semiconductor and being a layer whose conductivity type is a first conductivity type; a quantum-well light-receiving layer containing a group III-V compound semiconductor; a second semiconductor layer containing a group III-V compound semiconductor; and a third semiconductor layer containing a group III-V compound semiconductor and being a layer whose conductivity type is a second conductivity type. The first semiconductor layer, the quantum-well light-receiving layer, the second semiconductor layer, and the third semiconductor layer are stacked in this order. The concentration of an impurity that generates a carrier of the second conductivity type is 1×1014 cm−3 or more and 1×1017 cm−3 or less in the second semiconductor layer.
摘要:
A semiconductor layer includes a first semiconductor layer containing a III-V group compound semiconductor and having a first conductivity type, a quantum-well structure containing a III-V group compound semiconductor, a second semiconductor layer containing a III-V group compound semiconductor, a third semiconductor layer containing a III-V group compound semiconductor, and a fourth semiconductor layer containing a III-V group compound semiconductor and having a second conductivity type different from the first conductivity type. The first semiconductor layer, the quantum-well structure, the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer are stacked in this order. The concentration of an impurity that generates carriers of the second conductivity type is lower in the third semiconductor layer than in the fourth semiconductor layer. The concentration of an impurity that generates majority carriers in the second semiconductor layer is lower in the third semiconductor layer than in the second semiconductor layer.
摘要:
A method of measuring a breakdown voltage of a semiconductor element includes the steps below. A wafer provided with a plurality of semiconductor elements each having an electrode is prepared. The wafer is divided into a plurality of chips provided with at least one semiconductor element. After the step of division into the plurality of chips, a breakdown voltage of the semiconductor element is measured while a probe is in contact with the electrode of the semiconductor element in an insulating liquid.
摘要:
A vertical cavity surface emitting laser includes: a supporting base having a principal surface including III-V compound semiconductor containing gallium and arsenic as constituent elements; and a post disposed on the principal surface. The post has a lower spacer region including a III-V compound semiconductor containing gallium and arsenic as group-III elements, and an active layer having a quantum well structure disposed on the lower spacer region. The quantum well structure has a concentration of carbon in a range of 2×1016 cm−3 or more to 5×1016 cm−3 or less. The quantum well structure includes a well layer and a barrier layer. The well layer includes a III-V compound semiconductor containing indium as a group-III element, and the barrier layer includes a III-V compound semiconductor containing indium and aluminum as group-III elements. The lower spacer region is disposed between the supporting base and the active layer.
摘要:
A method of measuring a breakdown voltage of a semiconductor element includes the steps below. A wafer provided with a plurality of semiconductor elements each having an electrode is prepared. The wafer is divided into a plurality of chips provided with at least one semiconductor element. After the step of division into the plurality of chips, a breakdown voltage of the semiconductor element is measured while a probe is in contact with the electrode of the semiconductor element in an insulating liquid.
摘要:
A solder-containing semiconductor device includes a semiconductor device. The semiconductor device includes a substrate, at least one group III nitride semiconductor layer disposed on the substrate, a Schottky electrode disposed on the group III nitride semiconductor layer, and a pad electrode disposed on the Schottky electrode. The pad electrode has a multi-layer structure including at least a Pt layer. The solder-containing semiconductor device further includes a solder having a melting point of 200 to 230° C. and being disposed on the pad electrode of the semiconductor device. Thereby, the solder-containing semiconductor device including the Schottky electrode, the pad electrode disposed on the Schottky electrode and the solder disposed on the pad electrode can be mounted to offer a mounted solder-containing semiconductor device without degrading the semiconductor device properties.
摘要:
A vertical cavity surface emitting laser includes: a supporting base having a principal surface including III-V compound semiconductor containing gallium and arsenic as constituent elements; and a post disposed on the principal surface. The post has a lower spacer region including a III-V compound semiconductor containing gallium and arsenic as group-III elements, and an active layer having a quantum well structure disposed on the lower spacer region. The quantum well structure has a concentration of carbon in a range of 2×1016 cm−3 or more to 5×1016 cm−3 or less. The quantum well structure includes a well layer and a barrier layer. The well layer includes a III-V compound semiconductor containing indium as a group-III element, and the barrier layer includes a III-V compound semiconductor containing indium and aluminum as group-III elements. The lower spacer region is disposed between the supporting base and the active layer.
摘要:
A Schottky barrier diode includes a semiconductor layer, a Schottky electrode on a first main surface of the semiconductor layer, the Schottky electrode being in Schottky contact with the semiconductor layer, and an ohmic electrode on a second main surface of the semiconductor layer opposite the first main surface, the ohmic electrode being in ohmic contact with the semiconductor layer. The semiconductor layer contains gallium nitride or silicon carbide. The semiconductor layer includes a drift layer. The drift layer has a thickness of 2 μm or less.