Abstract:
A method for producing a semiconductor light receiving device includes the steps of growing a stacked semiconductor layer on a principal surface of a substrate, the stacked semiconductor layer including a light-receiving layer having a super-lattice structure, the super-lattice structure including a first semiconductor layer and a second semiconductor layer that are stacked alternately; forming a mask on the stacked semiconductor layer; forming a mesa structure on the substrate by etching the stacked semiconductor layer using the mask so as to form a substrate product, the mesa structure having a side surface exposed in an atmosphere; forming a fluorinated amorphous layer on the side surface of the mesa structure by exposing the substrate product in fluorine plasma; and after the step of forming the fluorinated amorphous layer, forming a passivation film containing an oxide on the side surface of the mesa structure.
Abstract:
A method for fabricating a semiconductor optical device includes: preparing a product having a supporting base with a top face and a back face, a semiconductor product mounted on the top face, and an adhesive film with a film containing pressure sensitive material, the adhesive film being between the semiconductor product and the supporting base in the product, and the semiconductor product including a semiconductor laminate and a patterned resist layer on the semiconductor laminate; applying force to the product to produce an intermediate product from the product, the adhesive film bonding the semiconductor product and the top face of the supporting base to each other; disposing the intermediate product on a stage of an etching apparatus; and etching the semiconductor product in the intermediate product with the patterned resist layer in the etching apparatus while the semiconductor product being cooled through the stage.
Abstract:
A method for fabricating a surface emitting laser includes the steps of: carrying out etching of a semiconductor laminate with a mask; and stopping the etching in response to a detection signal from an end point detector in an etching apparatus. The mask has a device area including device sections and an accessary area. The device area has an aperture ratio (OPD/SC) having a first value, the aperture ratio (OPD/SC) being defined as a total area (OPD) of an opening in each device section to an area (SC) of the device section. The accessary area has an aperture ratio having a second value configured to have substantially the same value as the first value, the aperture ratio of the accessary area being defined as an area of the opening pattern in a portion having an area, which is equal to the area of the device section, in the accessary area.
Abstract:
A transistor includes a semiconductor stack portion, a source electrode, a drain electrode, a gate electrode, a first polysilicon film, a dielectric layer, a first plug, and a first wiring. The source electrode and the drain electrode are provided on the semiconductor stack portion. The gate electrode is provided between the source electrode and the drain electrode on the semiconductor stack portion. The first polysilicon film is provided on a first electrode that is one of the gate electrode, the source electrode, and the drain electrode. The dielectric layer is provided on the semiconductor stack portion and covers the gate electrode, the source electrode, the drain electrode, and the first polysilicon film. The dielectric layer has a first opening formed on the first polysilicon film. The first plug contains tungsten, is embedded in the first opening, and is in contact with the first polysilicon film.
Abstract:
A method of producing a semiconductor laser device includes the steps of preparing first and second substrate products each of which includes a substrate and a stacked semiconductor layer formed on the substrate, the first and second substrate products being different from each other; etching the first substrate product with a chlorine-based gas in a vacuum chamber by using a dry etching method; evacuating the vacuum chamber while monitoring a partial pressure of hydrogen chloride in the vacuum chamber so as to obtain the partial pressure of the hydrogen chloride within a predetermined range; after evacuating the vacuum chamber, introducing the second substrate product into the vacuum chamber while maintaining a vacuum state inside the vacuum chamber; and etching the second substrate product with a chlorine-based gas in the vacuum chamber by using the dry etching method.
Abstract:
A method for fabricating a surface emitting laser includes the steps of: preparing an epitaxial substrate including a substrate and a laminate disposed on the substrate, the laminate including a Bragg reflector and an active layer; forming a mask for defining a semiconductor post on the epitaxial substrate; after forming the mask, placing the epitaxial substrate in an etching apparatus with an end point detector including an optical device; carrying out plasma etching of the epitaxial substrate by supplying a gas including boron chloride and chlorine in the etching apparatus; and stopping the plasma etching in response to an end point detection from the end point detector of the etching apparatus. The optical device of the end point detector detects an end point of a process through a viewport of the etching apparatus. The plasma etching is carried out in a process pressure of one Pascal or less.
Abstract:
A method for producing a quantum cascade laser includes the steps of forming a laser structure including a mesa structure and a buried region embedding the mesa structure; forming a mask on the laser structure, the mask including a first pattern that defines a λ/4 period distribution Bragg reflector structure and a second pattern that defines a 3λ/4 period distribution Bragg reflector structure; and forming a first distribution Bragg reflector structure, a second distribution Bragg reflector structure, and a semiconductor waveguide structure by dry-etching the laser structure through the mask, the semiconductor waveguide structure including the mesa structure that has first and second end facets. The first distribution Bragg reflector structure is optically coupled to the first end facet. The second distribution Bragg reflector structure is optically coupled to the second end facet. Here, λ denotes a value of an oscillation wavelength of the quantum cascade laser in vacuum.
Abstract:
A method of manufacturing a semiconductor device includes: forming an electron transit layer; forming an electron supply layer; forming a protective film; forming a zinc oxide film; forming a sacrifice layer; forming a first opening and a second opening in the sacrifice layer and the zinc oxide film; forming a third opening connecting to the first opening and a fourth opening connecting to the second opening; forming, by acid treatment using a weakly acidic solution, a first gap in a first portion exposed to the first opening of the zinc oxide film, and a second gap in a second portion exposed to the second opening of the zinc oxide film; forming, after the acid treatment, a source region on a bottom surface of the third opening and a drain region on a bottom surface of the fourth opening; and removing the zinc oxide film.
Abstract:
An integrated quantum cascade laser includes: a laser structure including first to third regions arranged in a direction of a first axis, the laser structure including a substrate and a laminate including a core layer; first and second metal layers disposed on the third region; the third and fourth metal layers disposed on the first region; first to fourth bump electrodes disposed on the first to fourth metal layers, respectively; first and second semiconductor mesas provided in the first region, each of the first and second semiconductor mesas including the core layer; and a distribute Bragg reflector provided in the second region, the distribute Bragg reflector having one or more semiconductor walls. The first and second metal layers are electrically connected to the first and second semiconductor mesas, respectively. The third and fourth metal layers are separated apart from the first and second metal layers.
Abstract:
A method for fabricating a surface emitting laser includes the steps of: preparing a processing apparatus with a first part and a second part, the processing apparatus including a first heater and a second heater that heat the first part and the second part, respectively; preparing a wafer product for forming a surface emitting laser, the wafer product including a semiconductor post including a III-V compound semiconductor layer containing aluminum as a constituent element, the III-V compound semiconductor layer being exposed at a side face of the semiconductor post; after disposing the wafer product in the second part, energizing the first heater and the second heater; supplying a first gas containing no oxidizing agent to the processing apparatus; and after stopping supplying the first gas, oxidizing the III-V compound semiconductor layer by supplying a second gas containing an oxidizing agent to the processing apparatus.