Abstract:
A semiconductor package may include a package substrate, a first interposer substrate mounted on the package substrate, and a first semiconductor chip disposed on the first interposer substrate. The first interposer substrate may include a first base layer, a second base layer disposed on the first base layer, circuit patterns provided in each of the first base layer and the second base layer, and an integrated device embedded in the first base layer and connected to at least one of the circuit patterns. A top surface of the first base layer may contact a bottom surface of the second base layer.
Abstract:
A semiconductor package may include a package substrate, a first interposer substrate mounted on the package substrate, and a first semiconductor chip disposed on the first interposer substrate. The first interposer substrate may include a first base layer, a second base layer disposed on the first base layer, circuit patterns provided in each of the first base layer and the second base layer, and an integrated device embedded in the first base layer and connected to at least one of the circuit patterns. A top surface of the first base layer may contact a bottom surface of the second base layer.
Abstract:
Provided are a thermal interface material layer and a package-on-package device including the same. The package-on-package device may include a thermal interface material layer interposed between lower and upper semiconductor packages and configured to have a specific physical property. Accordingly, it is possible to prevent a crack from occurring in a lower semiconductor chip, when a solder ball joint process is performed to mount the upper semiconductor package on the lower semiconductor package.
Abstract:
Provided are a thermal interface material layer and a package-on-package device including the same. The package-on-package device may include a thermal interface material layer interposed between lower and upper semiconductor packages and configured to have a specific physical property. Accordingly, it is possible to prevent a crack from occurring in a lower semiconductor chip, when a solder ball joint process is performed to mount the upper semiconductor package on the lower semiconductor package.
Abstract:
A semiconductor package may include a package substrate, a first interposer substrate mounted on the package substrate, and a first semiconductor chip disposed on the first interposer substrate. The first interposer substrate may include a first base layer, a second base layer disposed on the first base layer, circuit patterns provided in each of the first base layer and the second base layer, and an integrated device embedded in the first base layer and connected to at least one of the circuit patterns. A top surface of the first base layer may contact a bottom surface of the second base layer.
Abstract:
A semiconductor package includes a first substrate, a first chip structure and a second chip structure spaced apart from each other on the first substrate, a gap region being defined between the first and second chip structures, and a heat dissipation member covering the first chip structure, the second chip structure, and the first substrate, the heat dissipation member including a first trench in an inner top surface of the heat dissipation member, wherein the first trench vertically overlaps with the gap region and has a width greater than a width of the gap region, and wherein the first trench vertically overlaps with at least a portion of a top surface of the first chip structure or a portion of a top surface of the second chip structure.
Abstract:
A package-on-package assembly includes first and second packages and an adhesion member positioned between the first and second packages and adhering the first and second packages to one another. The first package may include a first substrate having a first surface and a second surface facing each other and including a land pad formed on the first surface, a first semiconductor chip formed on the first surface, and a first encapsulant member encapsulating the first surface and the first semiconductor chip and including a through-via spaced apart from the first semiconductor chip and exposing the land pad and a trench formed between the first semiconductor chip and the through-via, and wherein at least a portion of the trench is filled with adhesion member material.
Abstract:
A package-on-package assembly includes first and second packages and an adhesion member positioned between the first and second packages and adhering the first and second packages to one another. The first package may include a first substrate having a first surface and a second surface facing each other and including a land pad formed on the first surface, a first semiconductor chip formed on the first surface, and a first encapsulant member encapsulating the first surface and the first semiconductor chip and including a through-via spaced apart from the first semiconductor chip and exposing the land pad and a trench formed between the first semiconductor chip and the through-via, and wherein at least a portion of the trench is filled with adhesion member material.
Abstract:
A semiconductor package includes a substrate and an interposer disposed on the substrate. The interposer comprises a first surface facing the substrate and a second surface facing away from the substrate. A first logic semiconductor chip is disposed on the first surface of the interposer and is spaced apart from the substrate in a first direction orthogonal to an upper surface of the substrate. A first memory package is disposed on the second surface of the interposer. A second memory package is disposed on the second surface of the interposer and is spaced apart from the first memory package in a second direction that is parallel to the upper surface of the substrate. A first heat transfer unit is disposed on a surface of the substrate facing the first logic semiconductor chip. The first heat transfer unit is spaced apart from the first logic semiconductor chip in the first direction.
Abstract:
Provided are a thermal interface material layer and a package-on-package device including the same. The package-on-package device may include a thermal interface material layer interposed between lower and upper semiconductor packages and configured to have a specific physical property. Accordingly, it is possible to prevent a crack from occurring in a lower semiconductor chip, when a solder ball joint process is performed to mount the upper semiconductor package on the lower semiconductor package.