Abstract:
A solid-state drive device includes a memory module in which at least one non-volatile memory device is mounted, a first heat storage unit and a second heat storage unit covering upper and lower parts of the memory module, respectively, to store heat emitted by the memory module, and having at least portions connected to each other, respectively, a cover having a space in which the memory module and the first and second heat storage units are received and arranged with a spacing distance from the first and second heat storage units, respectively, and an inner frame arranged between the cover and at least one of the first and second heat storage units, to provide the spacing distance.
Abstract:
A method for manufacturing a semiconductor light emitting device package includes forming a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a growth substrate, forming a reflective layer on a first surface of the light emitting structure corresponding to a surface of the second conductivity-type semiconductor layer, forming bumps on the first surface, the bumps being electrically connected to the first or second conductivity-type semiconductor layer and protruding from the reflective layer, bonding a support substrate to the bumps on the first surface, removing the growth substrate, bonding a light transmissive substrate coated with a wavelength conversion layer to a second surface of the light emitting structure from which the growth substrate is removed, and removing the support substrate. The reflective layer covers at least portions of side surfaces of the light emitting structure and the bumps.
Abstract:
An electronic device comprising a nonvolatile memory, a memory controller configured to control the nonvolatile memory, and a host connected to the memory controller. In response to a first write signal received from the host, the memory controller is configured to provide the first write signal to the nonvolatile memory, the nonvolatile memory is configured to perform a write operation based on the provided first write signal, generate first metadata based on a result of performing the write operation, and provide the generated first metadata to the host. The host is configured to determine whether to perform garbage collection for the nonvolatile memory using a neural network model trained based on the provided first metadata or the first write signal, provide a garbage collection request signal to the memory controller in response to determining to perform garbage collection.
Abstract:
A solid-state drive device includes a memory module in which at least one non-volatile memory device is mounted, a first heat storage unit and a second heat storage unit covering upper and lower parts of the memory module, respectively, to store heat emitted by the memory module, and having at least portions connected to each other, respectively, a cover having a space in which the memory module and the first and second heat storage units are received and arranged with a spacing distance from the first and second heat storage units, respectively, and an inner frame arranged between the cover and at least one of the first and second heat storage units, to provide the spacing distance.
Abstract:
A light emitting diode (LED) lighting system having a gas detection function may be used not only for lighting but also for detection of volatile organic compounds (VOCs) causing the sick house syndrome at home and other odorless and colorless non-combustible gas harmful to a human body. The LED lighting system may be used as an optical sensor showing with the fast response time and high sensitivity with respect to an environment harmful to a human body. In addition, since the presence of gas can be easily detected through a change of color in comparison to sound alarms for fire and gas contamination, emergency situations can be effectively handled.
Abstract:
An induction heating cooking apparatus and a method of displaying cooking information of the induction heating cooking apparatus are provided, and more particularly, an induction heating cooking apparatus and a method of displaying cooking information of the induction heating cooking apparatus that provide cooking information to a user through a reflector positioned inside the induction heating cooking apparatus are disclosed. Some of the disclosed embodiments provide the induction heating cooking apparatus and the method of displaying cooking information of the induction heating cooking apparatus that provide the cooking information to the user using a projector and the reflector positioned inside the induction heating cooking apparatus.
Abstract:
A light-emitting element mounting substrate is provided. The light-emitting element mounting substrate includes an insulating base plate comprising a first surface, a second surface facing the first surface, and a plurality of pad regions disposed on the first surface in an m-by-n matrix form, each of m and n being a natural number; a first conductive pad that is disposed in one of the plurality of pad regions and is in contact with the insulating base plate; a second conductive pad that is disposed in another one of the plurality of pad regions apart from the first conductive pad and is in contact with the insulating base plate; a first through hole disposed at a position corresponding to the first conductive pad to penetrate the insulating base plate; a second through hole that is disposed at a position corresponding to the second conductive pad to penetrate the insulating base plate and is spaced apart from the first through hole; a first through conduit filling the first through hole and being in contact with the first conductive pad; and a second through conduit filling the second through hole and being in contact with the second conductive pad.
Abstract:
A method for manufacturing a semiconductor light emitting device package includes forming a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a growth substrate, forming a reflective layer on a first surface of the light emitting structure corresponding to a surface of the second conductivity-type semiconductor layer, forming bumps on the first surface, the bumps being electrically connected to the first or second conductivity-type semiconductor layer and protruding from the reflective layer, bonding a support substrate to the bumps on the first surface, removing the growth substrate, bonding a light transmissive substrate coated with a wavelength conversion layer to a second surface of the light emitting structure from which the growth substrate is removed, and removing the support substrate. The reflective layer covers at least portions of side surfaces of the light emitting structure and the bumps.
Abstract:
A light emitting device package includes a base including at least one recess, at least one light emitting device disposed within the recess, and a reflective wall filling a space between the light emitting device and the recess so as to surround lateral surfaces of the light emitting device. The recess is formed to have a depth ranging from 80% to 120% of a height of the light emitting device.
Abstract:
A method of manufacturing a light emitting diode package comprises steps of: scanning a light emitting diode chip mounted on a package substrate to acquire mounting image data; generating three dimensional (3D) image data by comparing the mounting image data with mounting reference data; and forming an optical structure including a plurality of layers on the package substrate on using the 3D image data.