Abstract:
A method of fabricating a semiconductor light emitting device includes forming a first conductivity type semiconductor layer, forming an active layer by alternately forming a plurality of quantum well layers and a plurality of quantum barrier layers on the first conductivity type semiconductor layer, and forming a second conductivity type semiconductor layer on the active layer. The plurality of quantum barrier layers include at least one first quantum barrier layer adjacent to the first conductivity type semiconductor layer and at least one second quantum barrier layer adjacent to the second conductivity type semiconductor layer. The forming of the active layer includes allowing the at least one first quantum barrier layer to be grown at a first temperature and allowing the at least one second quantum barrier layer to be grown at a second temperature lower than the first temperature.
Abstract:
A semiconductor memory device is provided that includes a bit line on a substrate, a protruded insulating pattern on the bit line, and in a channel trench, first and second channel patterns that extend along sidewalls of the channel trench, and spaced apart from the first channel pattern in the first direction, a channel interfacial layer that extends along the sidewalls of the channel trench, and is in contact with the first channel pattern and the second channel pattern, a first word line between the first channel pattern and the second channel pattern, a second word line between the first channel pattern and the second channel pattern, and is spaced apart from the first word line in the first direction and a first capacitor and a second capacitor, which are electrically connected to the first channel pattern and the second channel pattern.
Abstract:
A memory device includes memory cells, the memory cells each including a first gate, a second gate electrically isolated from the first gate, a first gate insulating layer including a data storage layer having a ferroelectric material and disposed between the first gate and a channel region, a second gate insulating layer disposed between the second gate and the channel region, a first switching cell connected between the memory cells and a source line, and a second switching cell connected between the memory cells and a bit line. The second switching cell includes a third gate, a fourth gate, a third gate insulating layer not including a data storage layer having the ferroelectric material and the third gate disposed between the third gate and the channel region, and a fourth gate insulating layer disposed between the fourth gate and the channel region.
Abstract:
A fluid analysis cartridge with improved test reliability and an associated fluid analysis cartridge assembly are disclosed herein. A fluid analysis cartridge assembly includes a sample collecting member having a sample collecting chamber and a fluid analysis cartridge configured to be connected to the sample collecting member. The fluid analysis cartridge includes a sample receiving chamber configured to receive a sample collected by the sample collecting member and at least one hole arranged on one side of the sample receiving chamber and opened by connection of the sample collecting member to the fluid analysis cartridge to the at least one hole. The sample receiving chamber stores a buffer solution to be mixed with the sample.
Abstract:
A method of fabricating a semiconductor light emitting device includes forming a first conductivity type semiconductor layer, forming an active layer by alternately forming a plurality of quantum well layers and a plurality of quantum barrier layers on the first conductivity type semiconductor layer, and forming a second conductivity type semiconductor layer on the active layer. The plurality of quantum barrier layers include at least one first quantum barrier layer adjacent to the first conductivity type semiconductor layer and at least one second quantum barrier layer adjacent to the second conductivity type semiconductor layer. The forming of the active layer includes allowing the at least one first quantum barrier layer to be grown at a first temperature and allowing the at least one second quantum barrier layer to be grown at a second temperature lower than the first temperature.
Abstract:
Disclosed herein is a microfluidic device, which includes a platform, at least one chamber provided in the platform to accommodate a sample, and at least one channel configured to couple the chambers to each other. The at least one chamber includes a detection chamber configured to detect the sample, and the microfluidic device further includes a light blocking portion configured to prevent external light from entering the detection chamber so as to prevent occurrence of errors in detection of the sample in the detection chamber. The microfluidic device can be useful for preventing the occurrence of detection errors which might otherwise be caused by interference of external light. The microfluidic device may also be useful for reducing an inspection time and for miniaturizing microfluidic devices. Further, the microfluidic device may be useful for preventing contaminants from entering the detection chamber.
Abstract:
A method of manufacturing a semiconductor device, includes forming an aluminum compound film on a surface of a process chamber by supplying an aluminum (Al) source to the process chamber, the surface contacting the aluminum source in the process chamber; disposing a wafer on a susceptor provided in the process chamber after forming the aluminum compound film; and forming a thin film for the semiconductor device on the wafer.