Abstract:
A memory device includes a memory cell array, a data pattern providing unit, and a write circuit. The memory cell array includes a plurality of memory regions. The data pattern providing unit is configured to provide a predefined data pattern. The write circuit is configured to, when a first write command and an address signal are received from an external device, write the predefined data pattern provided from the data pattern providing unit to a memory region corresponding to the address signal.
Abstract:
A semiconductor memory device includes a cell array including a plurality of cell regions, a row decoder configured to drive rows corresponding to cell regions in which a refresh operation is to be performed, based on a counting address, and a refresh address generator configured to generate the counting address and a modified address in response to a control signal, wherein the modified address is generated by inverting at least one bit of the counting address, and wherein the semiconductor memory device performs concurrent refresh operations on a first cell region corresponding to the counting address and a second cell region corresponding to the modified address where the second cell region is determined to have weak cells.
Abstract:
In a method of operating a memory device, a command and a first address from a memory controller are received. A read code word including a first set of data corresponding to the first address, a second set of data corresponding to a second address and a read parity data is read from a memory cell array of the memory device. Corrected data are generated by operating error checking and correction (ECC) using an ECC circuit based on the read cord word.
Abstract:
In one example embodiment, a memory module includes a plurality of memory devices and a buffer chip configured to manage the plurality of memory device. The buffer chip includes a memory management unit having an error correction unit configured to perform error correction operation on each of the plurality of memory devices. Each of the plurality of memory devices includes at least one spare column that is accessible by the memory management unit, and the memory management unit is configured to correct errors of the plurality of memory devices by selectively using the at least one spare column based on an error correction capability of the error correction unit.
Abstract:
A repair control circuit of controlling a repair operation of a semiconductor memory device includes a row matching block and a column matching block. The row matching block stores fail group information indicating one or more fail row groups among a plurality of row groups. The row groups are determined by grouping a plurality of row addresses corresponding to a plurality of wordlines. The row matching block generates a group match signal based on input row address and the fail group information, such that the group match signal indicates the fail row group including the input row address. The column matching block stores fail column addresses of the fail memory cells, and generates a repair control signal based on input column address, the group match signal and the fail column addresses, such that the repair control signal indicates whether the repair operation is executed or not.
Abstract:
A method of scrubbing errors from a semiconductor memory device including a memory cell array and an error correction circuit, can be provided by accessing a page of the memory cell array to provide a data that includes sub units that are separately writable to the page of memory and to provide parity data configured to detect and correct a bit error in the data and selectively enabling write-back of a selected sub unit of the data responsive to determining that the selected sub unit of data includes a correctable error upon access as part of an error scrubbing operation.
Abstract:
A memory module includes a plurality of memory devices and a buffer chip. The buffer chip manages the memory devices. The buffer chip includes a refresh control circuit that groups a plurality of memory cell rows of the memory devices into a plurality of groups according to a data retention time of tire memory cell rows. The buffer chip selectively refreshes each of the plurality of groups in each of a plurality of refresh time regions that are periodically repeated and applies respective refresh periods to the plurality of groups, respectively.
Abstract:
A method of scrubbing errors from a semiconductor memory device including a memory cell array and an error correction circuit, can be provided by accessing a page of the memory cell array to provide a data that includes sub units that are separately writable to the page of memory and to provide parity data configured to detect and correct a bit error in the data and selectively enabling write-back of a selected sub unit of the data responsive to determining that the selected sub unit of data includes a correctable error upon access as part of an error scrubbing operation.
Abstract:
A memory device includes a memory cell array, a data pattern providing unit, and a write circuit. The memory cell array includes a plurality of memory regions. The data pattern providing unit is configured to provide a predefined data pattern. The write circuit is configured to, when a first write command and an address signal are received from an external device, write the predefined data pattern provided from the data pattern providing unit to a memory region corresponding to the address signal.
Abstract:
A memory device includes a memory cell array, a data pattern providing unit, and a write circuit. The memory cell array includes a plurality of memory regions. The data pattern providing unit is configured to provide a predefined data pattern. The write circuit is configured to, when a first write command and an address signal are received from an external device, write the predefined data pattern provided from the data pattern providing unit to a memory region corresponding to the address signal.