摘要:
A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film has low resistivity and a low content of Cl even with excellent step coverage, and it can be formed at a temperature of 500° C. or lower. Also, a deposition speed, approximately 20 Å/cycle, is suitable for mass production.
摘要:
A method for forming a metal layer using an atomic layer deposition process. A sacrificial metal atomic layer is formed on a semiconductor substrate by reacting a precursor containing a metal with a reducing gas, and a metal atomic layer is formed of metal atoms separated from a metal halide gas on a semiconductor substrate by reacting the sacrificial metal atomic layer with a metal halide gas. Also, a silicon atomic layer may be additionally formed on the metal atomic layer using a silicon source gas, to thereby alternately stack metal atomic layers and silicon layers. Thus, a metal layer or a metal silicide layer having excellent step coverage can be formed on the semiconductor substrate.
摘要:
A method of delivering two or more mutually-reactive reaction gases when a predetermined film is deposited on a substrate, and a shower head used in the gas delivery method, function to increase the film deposition rate while preventing formation of contaminating particles. In this method, one reaction gas is delivered toward the edge of the substrate, and the other reaction gases are delivered toward the central portion of the substrate, each of the reaction gases being delivered via an independent gas outlet to prevent the reaction gases from being mixed. In the shower head, separate passages are provided to prevent the first reaction gas from mixing with the other reaction gases by delivering the first reaction gas from outlets formed around the edge of the bottom surface of the shower head. The other reaction gases are delivered from outlets formed in the central portion of the bottom surface of the shower head. Accordingly, one of the mutually-reactive gases is delivered toward the central portion of the substrate, and the others are delivered toward the edge of the substrate.
摘要:
A method for forming a metal layer located over a metal underlayer of a semiconductor device, using a metal halogen gas. The method involves supplying a predetermined reaction gas into a reaction chamber for a predetermined period of time prior to deposition of the metal layer. The reaction gas has a higher reactivity with an active halogen element of a metal halogen gas supplied to form the metal layer, compared to a metal element of the metal halogen gas. As the metal halogen gas is supplied into the reaction chamber, the reaction gas reacts with the halogen radicals of the metal halogen gas, so that the metal underlayer is protected from being contaminated by impurities containing the halogen radicals.
摘要:
A selective metal layer formation method, a capacitor formation method using the same, and a method of forming an ohmic layer on a contact hole and filling the contact hole using the same, are provided. A sacrificial metal layer is selectively deposited on a conductive layer by supplying a sacrificial metal source gas which deposits selectively on a semiconductor substrate having an insulating film and the conductive layer. Sacrificial metal atoms and a halide are formed, and the sacrificial metal layer is replaced with a deposition metal layer such as titanium Ti or platinum Pt, by supplying a metal halide gas having a halogen coherence smaller than the halogen coherence of the metal atoms in the sacrificial metal layer. If such a process is used to form a capacitor lower electrode or form an ohmic layer on the bottom of a contact hole, a metal layer can be selectively formed at a temperature of 500° C. or lower.
摘要:
A method of fabricating a semiconductor device includes forming an interlayer insulating layer on a semiconductor substrate, forming a hard mask layer on the interlayer insulating layer, forming a hard mask pattern in which a plurality of contact hole patterns are formed by patterning the hard mask layer at least two times, conformally forming a supporting liner layer on the hard mask pattern, which supports the hard mask pattern during etching by reinforcing the thickness of the hard mask pattern, forming a plurality of contact hole patterns in the interlayer insulating layer using the hard mask pattern on which the supporting liner layer is formed as an etching mask, and forming contact plugs filling the plurality of contact hole patterns.
摘要:
A semiconductor device having self-aligned contact pads and a method for manufacturing the same are provided. The semiconductor device includes a semiconductor substrate and an isolation layer formed on the semiconductor substrate. The semiconductor substrate defines a plurality of active regions that each have a major axis and a minor axis. A plurality of gates are formed to cross the plurality of active regions and extend in the direction of the minor axis. First and second source/drain regions are formed in active regions at either side of each of the gates. First and second self-aligned contact pads (SACs) are formed to contact the top surfaces of the first and second source/drain regions, respectively.
摘要:
An organic anti-reflective coating (ARC) is formed over a surface of a semiconductor substrate, and a resist layer including a photosensitive polymer is formed on the ARC. The photoresistive polymer contains a hydroxy group. The resist layer is then subjected to exposure and development to form a resist pattern. The resist pattern to then silylated to a given depth by exposing a surface of the resist pattern to a vapor phase organic silane mixture of a first organic silane compound having a functional group capable of reacting with the hydroxy group of the photoresistive polymer, and a second organic silane compound having two functional groups capable of reacting with the hydroxy group of the photoresistive polymer Then, the silylated resist pattern is thermally treated, and the organic ARC is an isotropically etched using the thermally treated resist pattern as an etching mask.
摘要:
The semiconductor structure includes an etch target layer to be pattemed, a multiple bottom anti-reflective coating (BARC) layer, and a photoresist (PR) pattern. The multiple BARC layer includes a first mask layer formed on the etch target layer and containing carbon, and a second mask layer formed on the first mask layer and containing silicon. A PR layer formed on the multiple BARC layer undergoes photolithography to form the PR pattern on the multiple BARC layer. The multiple BARC layer has a reflectance of 2% or less, and an interface angle between the PR pattern and the multiple BARC layer is 80° to 90°.
摘要:
A method of forming a photoresist pattern comprises providing a semiconductor substrate on which a layer to be etched is formed. The method further comprises forming a first photoresist pattern on the layer to be etched, processing the first photoresist pattern with hydrogen bromide (HBr) plasma, and forming a second photoresist pattern on the semiconductor substrate between the first photoresist patterns