摘要:
Example embodiments of a semiconductor chip packaging apparatus and method thereof are disclosed. The packaging apparatus may include a plating unit to perform a conductive plating process to form a conductive plating layer on external terminals of a semiconductor chip package, and a reflow unit adapted to melt the conductive plating layer. The plating unit and reflow unit may be disposed in a single line with the plating module. Thus, it is possible to effectively suppress the growth of whiskers on the plating layer of the external terminals, and to secure economical efficiency, reducing costs, and allowing mass production.
摘要:
Example embodiments of a semiconductor chip packaging apparatus and method thereof are disclosed. The packaging apparatus includes a plating unit that is disposed in a direction to form a conductive plating layer on external terminals of the semiconductor chip package; and a reflow unit that is disposed with the plating unit to melt the conductive plating layer. The packaging apparatus may further include a rinsing unit that is disposed with the plating unit to clean and cool the conductive plating layer. Thus, it is possible to effectively suppress the growth of whiskers on the plating layer of the external terminals, and to secure economical efficiency, reducing costs, and allowing mass production.
摘要:
A method of inspecting the alignment of a second structure with respect to a first structure, including emitting light from a first plane of a first structure to a second plane of a second structure in a first direction perpendicular to the first plane of the first structure, the first plane and the second plane facing each other. The incident light can be reflected from the second plane toward the first plane in a second direction parallel with the first direction. The position of the reflected light can be detected to inspect the alignment of the second structure with respect to the first structure.
摘要:
A method of forming a stack of thin wafers provides a wafer level stack to greatly reduce process time compared to a method where individually separated chips are stacked after a wafer is sawed. A rigid planar wafer support member stabilizes and planarizes each wafer while it is thin or its thickness is reduced and during subsequent wafer processing. Thinned wafers are stacked and the external support members are removed by applying heat or ultraviolet (UV) light to an expandable adhesive layer between the support members and the thin wafers. The stacked wafers then can be further processed and packaged without thin-wafer warping, cracking or breaking. A wafer level package made in accordance with the invented method also is disclosed.
摘要:
A method of forming a stack of thin wafers provides a wafer level stack to greatly reduce process time compared to a method where individually separated chips are stacked after a wafer is sawed. A rigid planar wafer support member stabilizes and planarizes each wafer while it is thin or its thickness is reduced and during subsequent wafer processing. Thinned wafers are stacked and the external support members are removed by applying heat or ultraviolet (UV) light to an expandable adhesive layer between the support members and the thin wafers. The stacked wafers then can be further processed and packaged without thin-wafer warping, cracking or breaking. A wafer level package made in accordance with the invented method also is disclosed.
摘要:
A method may involve mounting a first supporting plate on an active surface of a wafer using an adhesive. A portion of the back surface of the wafer may be backlapped. A second supporting plate may be mounted on the back surface of the wafer using an adhesive. The first supporting plate may be removed from the active surface of the wafer. Conductive bumps may be provided on the active surface. A backlapping process may include a first grinding process, a second grinding process, and a polishing process. The first and the second supporting plates may be fabricated from a solid material. The adhesive may be an ultraviolet cure adhesive or a thermal cure adhesive.
摘要:
A dicing tape attaching unit that can attach both a pre-cut dicing tape and a general dicing tape to a wafer in a semiconductor package assembling process, and an in-line system used in a semiconductor package process including the dicing tape attaching unit are provided. The dicing tape attaching unit supplies one of the pre-cut dicing tape and the general dicing tape and attaches it to a wafer according to the direction of rotation of a tape loader. Accordingly, without an additional pre-cut dicing tape attaching unit, either of the pre-cut dicing tape and the general dicing tape can be attached to the back side of the wafer by one and the same unit.
摘要:
A method may involve mounting a first supporting plate on an active surface of a wafer using an adhesive. A portion of the back surface of the wafer may be backlapped. A second supporting plate may be mounted on the back surface of the wafer using an adhesive. The first supporting plate may be removed from the active surface of the wafer. Conductive bumps may be provided on the active surface. A backlapping process may include a first grinding process, a second grinding process, and a polishing process. The first and the second supporting plates may be fabricated from a solid material. The adhesive may be an ultraviolet cure adhesive or a thermal cure adhesive.
摘要:
A method of utilizing a removable protective tape to protect the active surfaces of semiconductor wafer and the individual semiconductor chips during semiconductor packaging processes is provided along with several configurations of apparatuses that may be used in such a method for removing protective tape portions from individual semiconductor chips during the assembly process.
摘要:
Provided is a method by which differently-sized chips may be stacked at the wafer level. The wafer level chip stack method utilizes first and second wafer assemblies that support first and second wafers on adhesive tapes. One or both of the supported wafers may be sawed or otherwise divided to obtain separate first and second chips that remain fixed to respective first ring frames. The first and second wafer assemblies may then be positioned and aligned so that a back surface of the second wafer faces an active surface of the first wafer. Each of the second chips may then be bonded to a corresponding first chip to form a chip stack using an adhesive layer. The chip stacks may then be detached from the wafer assemblies and attached to a substrate.