摘要:
A vibration wave detector, having a receiver for receiving vibration waves such as sound waves and so on to be propagated in a medium, a resonant unit having a plurality of cantilever resonators each having such a length as to resonate at an individual predetermined frequency, a retaining rod for retaining the resonant unit, a vibration intensity detector for detecting the vibration intensity, for each predetermined frequency, of each of the resonators, by the vibration waves received by the receiver and propagated to the resonant unit by way of the retaining rod.
摘要:
A vibration wave detector, having a receiver for receiving vibration waves such as sound waves and so on to be propagated in a medium, a resonant unit having a plurality of cantilever resonators each having such a length as to resonate at an individual predetermined frequency, a retaining rod for retaining the resonant unit, a vibration intensity detector for detecting the vibration intensity, for each predetermined frequency, of each of the resonators, by the vibration waves received by the receiver and propagated to the resonant unit by way of the retaining rod.
摘要:
A vibration wave detector in which: a plurality of resonator beams, each having a different length and being allowed to resonate at a specific frequency, are provided; a piezoresistor is installed in each resonator beam; and the piezoresistors are parallel-connected so that vibration is converted to an electric signal by the piezoresistors so as to output the sum of vibration waveforms at the respective resonator beams. It is possible to control a gain of a specific frequency band by changing a voltage to be applied to the parallel circuit or changing the resistance value of each piezoresistor.
摘要:
A vibration wave detector having a first diaphragm for receiving vibration waves, such as sound waves and so on, to be propagated in a medium, a resonant unit having a plurality of cantilever resonators each having such a length as to resonate at an individual predetermined frequency, a retaining rod for retaining the resonant unit, a second diaphragm positioned on the opposite side of the first diaphragm with respect to the retaining rod, and a vibration intensity detector for detecting the vibration intensity, for each predetermined frequency, of each of the resonators, by the vibration waves received by the first diaphragm and propagated to the resonant unit through the retaining rod.
摘要:
On the other hand, the possibility of estimating the dopant ratio of a metal element to each ceria crystalline particle using integral-width or half-width obtained by XRD was considered as follows: an XRD peak is shifted depending on the dopant ratio of La to ceria; when La increases, an XRD peak is shifted to a lower angle; in XRD performed on a raw material obtained by mixing ceria crystalline particles having different dopant ratio, peaks corresponding to the respective dopant ratio exist close to each other; as a result, a peak width is widened; accordingly, the dopant ratio of a metal element to each ceria crystalline particles are supposed to vary when integral-width and half-width obtained by XRD are large. Thus, it was revealed for the first time that integral-width and half-width obtained by XRD indicate variations in dopant ratio. It should be noted that from the direct proportional relationship between the dopant ratio x and the integral-width for dopant ratio ranging from 0.35 to 0.45, integral-widths obtained by XRD are derived to be 0.10 to 0.30 for dopant ratio ranging from 0.35 to 0.45, and half-widths are derived to be 0.10 to 0.30 similarly.
摘要:
Disclosed is an improved board connector having an insulating housing with terminals mounted therein and an exterior shell fitting on the insulating housing. The exterior shell has long and short legs that fix the connector to a printed circuit board at a predetermined oblique angle to permit the oblique insertion of an opposing connector into the board connector without fear of interference with surrounding components. Thus, there is no need to leave extra space ahead of the connector to permit the opposing connector to lay flat ahead of the board connector on the circuit board when mating the two connectors together.
摘要:
In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
摘要:
This is a highly purified metal comprising one metal selected from the group consisted of titanium, zirconium and hafnium. The highly purified metal has an Al content of not more than 10 ppm. It also has an oxygen content of not more than 250 ppm, each of Fe, Ni and Cr contents not more than 10 ppm and each of Na and K contents not more than 0.1 ppm. The highly purified metal is obtained by either purifying crude metal by the iodide process or surface treating crude metal to remove a contaminated layer existing on the surface thereof and then melting the surface treated material with electron beam in a high vacuum.
摘要:
A solid oxide fuel cell scatters MgO over a grain boundary of an LSGM which is a solid electrolyte layer. Ni components that diffuse from a fuel electrode formed on the other side of an LDC from the LSGM are trapped by the scattered MgO particles and are suppressed from diffusing towards an air electrode in the electrolyte layer.
摘要:
Provided is a solid oxide fuel cell comprising the following: a fuel gas flow path, a fuel electrode layer provided around the fuel gas flow path and containing an iron group element and a ceramic, a solid electrolyte layer provided around the fuel electrode layer, and an air electrode layer provided around the solid electrolyte layer. In a high-temperature state where the temperature of the solid oxide fuel cell, in which a fuel gas is supplied from one side of the fuel gas flow path and exhausted through an opening provided on the other side of the fuel gas flow path, is close to a power generation temperature, the solid oxide fuel cell is subjected to a process for regulating oxidation expansion rate of the fuel electrode layer, the oxidation expansion occurring when an oxidant gas flows in through the opening. As a result, it has become possible to provide a solid oxide fuel cell in which cracks in the electrolyte and cell breakage are prevented even when air flows into the fuel electrode side at the suspension of operations of the fuel cell.